首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent evidence indicates that acquisition of artery or vein identity during vascular development is governed, in part, by genetic mechanisms. The artery-specific expression of a number of Notch signaling genes in mouse and zebrafish suggests that this pathway may play a role in arterial-venous cell fate determination during vascular development. We show that loss of Notch signaling in zebrafish embryos leads to molecular defects in arterial-venous differentiation, including loss of artery-specific markers and ectopic expression of venous markers within the dorsal aorta. Conversely, we find that ectopic activation of Notch signaling leads to repression of venous cell fate. Finally, embryos lacking Notch function exhibit defects in blood vessel formation similar to those associated with improper arterial-venous specification. Our results suggest that Notch signaling is required for the proper development of arterial and venous blood vessels, and that a major role of Notch signaling in blood vessels is to repress venous differentiation within developing arteries. Movies available on-line  相似文献   

2.
3.
During angiogenic sprouting, newly forming blood vessels need to connect to the existing vasculature in order to establish a functional circulatory loop. Previous studies have implicated genetic pathways, such as VEGF and Notch signaling, in controlling angiogenesis. We show here that both pathways similarly act during vascularization of the zebrafish central nervous system. In addition, we find that chemokine signaling specifically controls arterial-venous network formation in the brain. Zebrafish mutants for the chemokine receptor cxcr4a or its ligand cxcl12b establish a decreased number of arterial-venous connections, leading to the formation of an unperfused and interconnected blood vessel network. We further find that expression of cxcr4a in newly forming brain capillaries is negatively regulated by blood flow. Accordingly, unperfused vessels continue to express cxcr4a, whereas connection of these vessels to the arterial circulation leads to rapid downregulation of cxcr4a expression and loss of angiogenic characteristics in endothelial cells, such as filopodia formation. Together, our findings indicate that hemodynamics, in addition to genetic pathways, influence vascular morphogenesis by regulating the expression of a proangiogenic factor that is necessary for the correct pathfinding of sprouting brain capillaries.  相似文献   

4.
Flow regulates arterial-venous differentiation in the chick embryo yolk sac   总被引:9,自引:0,他引:9  
Formation of the yolk sac vascular system and its connection to the embryonic circulation is crucial for embryo survival in both mammals and birds. Most mice with mutations in genes involved in vascular development die because of a failure to establish this circulatory loop. Surprisingly, formation of yolk sac arteries and veins has not been well described in the recent literature. Using time-lapse video-microscopy, we have studied arterial-venous differentiation in the yolk sac of chick embryos. Immediately after the onset of perfusion, the yolk sac exhibits a posterior arterial and an anterior venous pole, which are connected to each other by cis-cis endothelial interactions. To form the paired and interlaced arterial-venous pattern characteristic of mature yolk sac vessels, small caliber vessels of the arterial domain are selectively disconnected from the growing arterial tree and subsequently reconnected to the venous system, implying that endothelial plasticity is needed to fashion normal growth of veins. Arterial-venous differentiation and patterning are controlled by hemodynamic forces, as shown by flow manipulation and in situ hybridization with arterial markers ephrinB2 and neuropilin 1, which show that expression of both mRNAs is not genetically determined but plastic and regulated by flow. In vivo application of ephrinB2 or EphB4 in the developing yolk sac failed to produce any morphological effects. By contrast, ephrinB2 and EphB4 application in the allantois of older embryos resulted in the rapid formation of arterial-venous shunts. In conclusion, we show that flow shapes the global patterning of the arterial tree and regulates the activation of the arterial markers ephrinB2 and neuropilin 1.  相似文献   

5.
hunchback regulates the temporal identity of neuroblasts in Drosophila. Here we show that hbl-1, the C. elegans hunchback ortholog, also controls temporal patterning. Furthermore, hbl-1 is a probable target of microRNA regulation through its 3'UTR. hbl-1 loss-of-function causes the precocious expression of adult seam cell fates. This phenotype is similar to loss-of-function of lin-41, a known target of the let-7 microRNA. Like lin-41 mutations, hbl-1 loss-of-function partially suppresses a let-7 mutation. The hbl-1 3'UTR is both necessary and sufficient to downregulate a reporter gene during development, and the let-7 and lin-4 microRNAs are both required for HBL-1/GFP downregulation. Multiple elements in the hbl-1 3'UTR show complementarity to regulatory microRNAs, suggesting that microRNAs directly control hbl-1. MicroRNAs may likewise function to regulate Drosophila hunchback during temporal patterning of the nervous system.  相似文献   

6.

Objective

Proper arterial and venous specification is a hallmark of functional vascular networks. While arterial-venous identity is genetically pre-determined during embryo development, it is unknown whether an analogous pre-specification occurs in adult neovascularization. Our goal is to determine whether vessel arterial-venous specification in adult neovascularization is pre-determined by the identity of the originating vessels.

Methods and Results

We assessed identity specification during neovascularization by implanting isolated microvessels of arterial identity from both mice and rats and assessing the identity outcomes of the resulting, newly formed vasculature. These microvessels of arterial identity spontaneously formed a stereotypical, perfused microcirculation comprised of the full complement of microvessel types intrinsic to a mature microvasculature. Changes in microvessel identity occurred during sprouting angiogenesis, with neovessels displaying an ambiguous arterial-venous phenotype associated with reduced EphrinB2 phosphorylation.

Conclusions

Our findings indicate that microvessel arterial-venous identity in adult neovascularization is not necessarily pre-determined and that adult microvessels display a considerable level of phenotypic plasticity during neovascularization. In addition, we show that vessels of arterial identity also hold the potential to undergo sprouting angiogenesis.  相似文献   

7.

Introduction

MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis.

Methods

Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR.

Results

Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production.

Conclusions

Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis.  相似文献   

8.
Quality Assessment and Data Analysis for microRNA Expression Arrays   总被引:1,自引:0,他引:1       下载免费PDF全文
MicroRNAs are small (~22 nt) RNAs that regulate gene expression and play important roles in both normal and disease physiology. The use of microarrays for global characterization of microRNA expression is becoming increasingly popular and has the potential to be a widely used and valuable research tool. However, microarray profiling of microRNA expression raises a number of data analytic challenges that must be addressed in order to obtain reliable results. We introduce here a universal reference microRNA reagent set as well as a series of nonhuman spiked-in synthetic microRNA controls, and demonstrate their use for quality control and between-array normalization of microRNA expression data. We also introduce diagnostic plots designed to assess and compare various normalization methods. We anticipate that the reagents and analytic approach presented here will be useful for improving the reliability of microRNA microarray experiments.  相似文献   

9.
10.
MicroRNAs are approximately 21-nucleotide-long regulators of gene expression that gain access to their target mRNAs by complementary base pairing. Recent studies have revealed that animal microRNAs might take diverse routes to repress gene expression, affecting both target mRNA levels and translation. Mechanistic details of microRNA-mediated repression are starting to emerge but a comprehensive picture of the inhibition, and particularly the effects on mRNA translation, is still lacking. Recent data support different microRNA mechanisms and a role for cytoplasmic processing bodies in the degradation and storage of mRNAs targeted by microRNA regulators.  相似文献   

11.
Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day (E) 11.5], functional vessels, replete with blood flow, are restricted to the mesenchyme, distal to the epithelium. However, by day E14.5, and in response to epithelial-derived VEGF signals, functional vessels extend from the mesenchyme to the epithelial interface. Moreover, these vessels reside adjacent to multipotent mesenchymal stromal cells that likely play a regulatory role in this process. As well as and distinct from the systemic vasculature, immunostaining for EphrinB2 and EphB4 revealed that arterial and venous identity is not distinguishable in emergent pulmonary vasculature. Collectively, this study provides evidence that lung vascularization initially originates in the mesenchyme, distal to the epithelium, and that arterial-venous specification does not exist in the early lung. At a mechanistic level, we show that basilar epithelial VEGF prompts endothelial cells to move toward the epithelium where they undergo morphogenesis during the proliferative, canalicular stage. Thus our findings challenge existing notions of vascular origin and identity during development.  相似文献   

12.
13.
Transcription and processing of human microRNA precursors   总被引:17,自引:0,他引:17  
Cullen BR 《Molecular cell》2004,16(6):861-865
  相似文献   

14.
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer -dependent and -independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.  相似文献   

15.
MicroRNAs are key modulators at molecular level in different biological processes, including determination of cell fate and differentiation. Herein, microRNA expression profiling experiments were performed on syngeneic cardiac (CStC) and bone marrow (BMStC) mesenchymal stromal cells cultured in standard growth medium and then in vitro exposed to adipogenic, osteogenic, cardiomyogenic and endothelial differentiation media. Analysis identified a tissue-specific microRNA signature composed of 16 microRNAs that univocally discriminated cell type of origin and that were completely unaffected by in vitro differentiation media: 4 microRNAs were over-expressed in cardiac stromal cells, and 12 were overexpressed or present only in bone marrow stromal cells. Further, results revealed microRNA subsets specifically modulated by each differentiation medium, irrespective of the cell type of origin, and a subset of 7 microRNAs that were down-regulated by all media with respect to growth medium. Finally, we identified 16 microRNAs that were differentially modulated by the media when comparing the two tissues of origin. The existence of a tissue-specific microRNA signature surviving to any differentiation stimuli, strongly support the role if microRNAs determining cell identity related to tissue origin. Moreover, we identified microRNA subsets modulated by different culture conditions in a tissue-specific manner, pointing out their importance during differentiation processes.  相似文献   

16.

Background

MicroRNAs are being used in the oncology field to characterize tumors and predict the survival of cancer patients. Here, we explored the potential of microRNAs as biomarkers for coronary artery disease (CAD) and acute coronary syndromes.

Methods and results

Using real-time PCR-based profiling, we determined the microRNA signature of peripheral blood mononuclear cells (PBMCs) from stable and unstable CAD patients and unaffected controls. 129 of 157 microRNAs measured were expressed by PBMCs and low variability between separate PBMC pools was observed. The presence of CAD in general coincided with a marked 5-fold increase (P < 0.001) in the relative expression level of miR-135a, while the expression of miR-147 was 4-fold decreased (P < 0.05) in PBMCs from CAD patients as compared to controls, resulting in a 19-fold higher miR-135a/miR-147 ratio (P < 0.001) in CAD. MicroRNA/target gene/biological function linkage analysis suggested that the change in PBMC microRNA signature in CAD patients is probably associated with a change in intracellular cadherin/Wnt signaling. Interestingly, unstable angina pectoris patients could be discriminated from stable patients based upon their relatively high expression level of a cluster of three microRNAs including miR-134, miR-198, and miR-370, suggesting that the microRNA signatures can be used to identify patients at risk for acute coronary syndromes.

Conclusions

The present study is the first to show that microRNA signatures can possibly be utilized to identify patients exhibiting atherosclerotic CAD in general and those at risk for acute coronary syndromes. Our findings highlight the importance of microRNAs signatures as novel tool to predict clinical disease outcomes.  相似文献   

17.
Within a day of gastrulation, the embryonic heart begins to beat and creates blood flow in the developing cardiovascular system. The onset of blood flow completely changes the environment in which the cardiovascular system is forming. Flow provides physiological feedback such that the developing network adapts to cue provided by the flow. Targeted inactivation of genes that alter early blood fluid dynamics induce secondary defects in the heart and vasculature and therefore proper blood flow is known to be essential for vascular development. Though hemodynamics, or blood fluid dynamics, are known to activate signaling pathways in the mature cardiovascular system in pathologies ranging from artherosclerosis to angiogenesis, the role in development has not been as intensively studied. The question arises how blood vessels in the embryos, which initially lack cells types such as smooth muscle cells, differ in their response to mechanical signals from blood flow as compared to the more mature cardiovascular system. Many genes known to be regulated by hemodynamics in the adult are important for developmental angiogenesis. Therefore the onset of blood flow is of primary importance to vascular development. This review will focus on how blood flow initiates and the effects of the mechanical signals created by blood flow on cardiovascular development.  相似文献   

18.
Identification of drought-induced microRNAs in rice   总被引:13,自引:0,他引:13  
  相似文献   

19.
MicroRNAs have emerged as crucial regulators of neuronal function, suggesting that aberrant microRNA expression might contribute to pathologies of the nervous system. In this issue of The EMBO Journal, Emde et al ( 2015 ) report a global decrease in microRNAs as common hallmark of different forms of amyotrophic lateral sclerosis (ALS). Strikingly, enhancing microRNA biogenesis has beneficial effects on the neuromuscular function in mouse models of ALS. Thus, the microRNA pathway represents a promising novel target for therapeutic intervention in neurodegeneration.  相似文献   

20.
李羿  赵洪雯  申兵冰  吴雄飞 《生物磁学》2014,(24):4794-4797
小分子核糖核酸(microRNA)是一类约20个核苷酸单链,在转录后水平调节基因的表达。microRNA广泛分布于人体各个组织器官内,但同时也有显著的组织特异性,不同的组织器官中miRNA的表达强度有显著差异,某些microRNAs在肾脏组织中呈特异性的高表达。肾间质纤维化是各种慢性肾脏病进展至终末期,最终导致器官功能丢失的共同的病理过程和特征。通过多年累积的研究表明,一些特定的microRNAs与肾间质纤维化的进程密切相关,在这个过程中体现出极其复杂的调控机制,发挥多方面的作用。近年来,随着对microRNA的研究进一步深入,本文就microRNAs在肾间质纤维化进程中的表达特点、作用靶点及相关调控机制的研究进展进行如下综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号