首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in vivo. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high affinity VEGF receptors. VEGF plays an essential role in developmental angiogenesis and is important also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with VEGF inhibitors in a variety of malignancies are ongoing. Recently, a humanized anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the FDA as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.  相似文献   

2.
Yancopoulos GD 《Cell》2010,143(1):13-16
This year's Lasker DeBakey Clinical Research Award goes to Napoleone Ferrara for the discovery of vascular endothelial growth factor (VEGF) as a major mediator of angiogenesis and for the development of an effective anti-VEGF therapy for wet macular degeneration, a leading cause of blindness in the elderly.  相似文献   

3.
Neovascularization in cancer or retinopathy is driven by pathological changes that foster abnormal sprouting of endothelial cells. Mouse genetic studies indicate that the stress-induced small GTPase RhoB is dispensable for normal physiology but required for pathogenic angiogenesis. In diabetic retinopathy, retinopathy of prematurity (ROP) or age-related wet macular degeneration (AMD), progressive pathologic anatomic changes and ischemia foster neovascularization are characterized by abnormal sprouting of endothelial cells. This process is driven by the angiogenic growth factor VEGF, which induces and supports the formation of new blood vessels. While injectable biologics targeting VEGF have been used to treat these pathological conditions, many patients respond poorly, prompting interest in other types of mechanism-based therapy. Here we report the preclinical efficacy of a monoclonal antibody that specifically targets RhoB, a signaling molecule that is genetically dispensable for normal physiology but required for pathogenic retinal angiogenesis. In murine models of proliferative retinal angiogenesis or oxygen-induced retinopathy, administering a monoclonal RhoB antibody (7F7) was sufficient to block neoangiogenesis or avascular pathology, respectively. Our findings offer preclinical proof of concept for antibody targeting of RhoB to limit diabetic retinopathy, ROP or wet AMD and perhaps other diseases of neovasculogenesis such as hemangioma or hemangiosarcoma nonresponsive to existing therapies.  相似文献   

4.
Multiple cellular pathways influence the growth and metastatic potential of tumors. This creates heterogeneity, redundancy, and the potential for tumors to bypass signaling pathway blockade, resulting in primary or acquired resistance. Combining therapies that inhibit different signaling pathways has the potential to be more effective than inhibition of a single pathway and to overcome tumor resistance. Vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) inhibitors have become key therapies in several tumor types. Close relationships between these factors exist: VEGF signaling is up-regulated by EGFR expression and, conversely, VEGF up-regulation independent of EGFR signaling seems to contribute to resistance to EGFR inhibition. Therefore, inhibition of both pathways could improve antitumor efficacy and overcome resistance to EGFR inhibition. Preclinical studies have shown that VEGF and EGFR inhibitors can have additive effects and that combined inhibition is effective in EGFR inhibitor-resistant cell lines. Clinical trials have also produced promising data: combining the anti-VEGF monoclonal antibody bevacizumab with the anti-EGFR antibody cetuximab or the EGFR tyrosine kinase inhibitor erlotinib increases benefit compared with either of these anti-EGFR agents alone or combined with chemotherapy. The potential of this novel approach to anticancer therapy will be elucidated by large, ongoing clinical trials.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is an essential regulator of normal and abnormal blood vessel growth. A monoclonal antibody (mAb) that targets VEGF suppresses tumor growth in murine cancer models and human patients. We investigated cellular and molecular events that mediate refractoriness of tumors to anti-angiogenic therapy. Inherent anti-VEGF refractoriness is associated with infiltration of the tumor tissue by CD11b+Gr1+ myeloid cells. Recruitment of these myeloid cells is also sufficient to confer refractoriness. Combining anti-VEGF treatment with a mAb that targets myeloid cells inhibits growth of refractory tumors more effectively than anti-VEGF alone. Gene expression analysis in CD11b+Gr1+ cells isolated from the bone marrow of mice bearing refractory tumors reveals higher expression of a distinct set of genes known to be implicated in active mobilization and recruitment of myeloid cells. These findings indicate that, in our models, refractoriness to anti-VEGF treatment is determined by the ability of tumors to prime and recruit CD11b+Gr1+ cells.  相似文献   

6.
Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness among people over the age of 60. Vascular endothelial growth factor (VEGF) plays a major role in pathological angiogenesis in AMD. Herein, we present the development of an anti- human VEGF repebody, which is a small-sized protein binder consisting of leucine-rich repeat (LRR) modules. The anti-VEGF repebody selected through a phage-display was shown to have a high affinity and specificity for human VEGF. We demonstrate that this repebody effectively inhibits in vitro angiogenic cellular processes, such as proliferation and migration, by blocking the VEGF-mediated signaling pathway. The repebody was also shown to have a strong suppression effect on choroidal neovascularization (CNV) and vascular leakage in vivo. Our results indicate that the anti-VEGF repebody has a therapeutic potential for treating neovascular AMD as well as other VEGF-involved diseases including diabetic retinopathy and metastatic cancers.  相似文献   

7.
Vascular endothelial growth factor (VEGF) binding to the kinase domain receptor (KDR/FLK1 or VEGFR-2) mediates vascularization and tumor-induced angiogenesis. Since there is evidence that KDR plays an important role in tumor angiogenesis, we sought to identify peptides able to block the VEGF-KDR interaction. A phage epitope library was screened by affinity for membrane-expressed KDR or for an anti-VEGF neutralizing monoclonal antibody. Both strategies led to the isolation of peptides binding KDR specifically, but those isolated by KDR binding tended to display lower reactivities. Of the synthetic peptides corresponding to selected clones tested to determine their inhibitory activity, ATWLPPR completely abolished VEGF binding to cell-displayed KDR. In vitro, this effect led to the inhibition of the VEGF-mediated proliferation of human vascular endothelial cells, in a dose-dependent and endothelial cell type-specific manner. Moreover, in vivo, ATWLPPR totally abolished VEGF-induced angiogenesis in a rabbit corneal model. Taken together, these data demonstrate that ATWLPPR is an effective antagonist of VEGF binding, and suggest that this peptide may be a potent inhibitor of tumor angiogenesis and metastasis.  相似文献   

8.
《TARGETS》2003,2(2):48-57
Vascular endothelial growth factor (VEGF) is a crucial growth factor that mediates tumor angiogenesis, and thus many therapeutic agents are being developed to target VEGF or its receptors in the treatment of cancer. Early-phase clinical data indicate that such agents are effective and might lack the nonspecific toxicities of conventional chemotherapies. The anti-VEGF antibody bevacizumab has also shown promising efficacy in Phase III studies. Further research is required, especially into patient selection, the autocrine and paracrine VEGF effector functions in different malignancies, and the long-term safety of these compounds, but it is probable that VEGF and its receptors will soon be important targets in the treatment of cancer.  相似文献   

9.
Heo JW  Kim JH  Cho CS  Jun HO  Kim DH  Yu YS  Kim JH 《PloS one》2012,7(3):e33456
Vascular endothelial growth factor (VEGF) is a major regulator in retinal and choroidal angiogenesis, which are common causes of blindness in all age groups. Recently anti-VEGF treatment using anti-VEGF antibody has revolutionarily improved the visual outcome in patients with vaso-proliferative retinopathies. Herein, we demonstrated that bevacizumab as an anti-VEGF antibody could inhibit differentiation of retinoblastoma cells without affection to cellular viability, which would be mediated via blockade of extracellular signal-regulated kinase (ERK) 1/2 activation. The retinoblastoma cells expressed VEGFR-2 as well as TrkA which is a neurotrophin receptor associated with differentiation of retinoblastoma cells. TrkA in retinoblastoma cells was activated with VEGF treatment. Interestingly even in the concentration of no cellular death, bevascizumab significantly attenuated the neurite formation of differentiated retinoblastoma cells, which was accompanied by inhibition of neurofilament and shank2 expression. Furthermore, bevacizumab inhibited differentiation of retinoblastoma cells by blockade of ERK 1/2 activation. Therefore, based on that the differentiated retinoblastoma cells are mostly photoreceptors, our results suggest that anti-VEGF therapies would affect to the maintenance or function of photoreceptors in mature retina.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is important mediator of angiogenesis, and its expression in colorectal tumors is related to tumor progression. VEGF expression has been detected in normal mucosa, primary colon cancers, and metastatic tumors, and patients with low VEGF expression have a better survival rate. In addition, anti-VEGF monoclonal antibody improves overall survival when used in combination with existing metastatic colorectal cancer therapy. Therefore, prediction of VEGF production based on individual genetic background might be important for predicting the course of the disease and the efficacy of anticancer treatment. The number of studies evaluating the influence of VEGF polymorphisms on cancer susceptibility is growing; however, their results are often conflicting. In addition, these studies are rarely accompanied with the expression analysis examining the influence of these polymorphisms on mRNA expression in tumor tissue. In this study, we have examined the influence of VEGF polymorphisms -1154 G/A and -460 C/T on VEGF mRNA expression and susceptibility to sporadic colon cancer by real-time PCR-SNP and mRNA expression analysis. The study included population control group consisting of 160 unrelated volunteers and a group of 160 patients with sporadic colon cancer. According to our results, -1154 G/A and -460 C/T do not influence VEGF mRNA expression in colorectal tumors and susceptibility to sporadic colon cancer, although the role of other polymorphisms cannot be excluded.  相似文献   

11.
A potent VEGF inhibitor with novel antibody architecture and antigen binding mode has been developed. The molecule, hereafter referred to as VEGF dual dAb (domain antibody), was evaluated in vitro for binding to VEGF and for potency in VEGF-driven models and compared with other anti-VEGF biologics that have been used in ocular anti-angiogenic therapeutic regimes. VEGF dual dAb is more potent than bevacizumab and ranibizumab for VEGF binding, inhibition of VEGF receptor binding assays (RBAs), and VEGF-driven in vitro models of angiogenesis and displays comparable inhibition to aflibercept (Eylea). VEGF dual dAb is dimeric, and each monomer contains two distinct anti-VEGF domain antibodies attached via linkers to a human IgG1 Fc domain. Mechanistically, the enhanced in vitro potency of VEGF dual dAb, in comparison to other anti-VEGF biologics, can be explained by increased binding stoichiometry. A consistent model of the target engagement has been built based on the x-ray complexes of each of the two isolated domain antibodies with the VEGF antigen.  相似文献   

12.
To fully assess the role of VEGF-A in tumor angiogenesis, antibodies that can block all sources of vascular endothelial growth factor (VEGF) are desired. Selectively targeting tumor-derived VEGF overlooks the contribution of host stromal VEGF. Other strategies, such as targeting VEGF receptors directly or using receptor decoys, result in inhibiting not only VEGF-A but also VEGF homologues (e.g. placental growth factor, VEGF-B, and VEGF-C), which may play a role in angiogenesis. Here we report the identification of novel anti-VEGF antibodies, B20 and G6, from synthetic antibody phage libraries, which block both human and murine VEGF action in vitro. Their affinity-improved variants completely inhibit three human tumor xenografts in mice of skeletal muscle, colorectal, and pancreatic origins (A673, HM-7, and HPAC). Avastin, which only inhibits the tumor-derived human VEGF, is approximately 90% effective at inhibiting HM-7 and A673 growth but is <50% effective at inhibiting HPAC growth. Indeed, HPAC tumors contain more host stroma invasion and stroma-derived VEGF than other tumors. Thus, the functional contribution of stromal VEGF varies greatly among tumors, and systemic blockade of both tumor and stroma-derived VEGF is sufficient for inhibiting the growth of tumor xenografts.  相似文献   

13.
Several angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway have been approved for cancer treatment. However, VEGF inhibitors alone were shown to promote tumor invasion and metastasis by increasing intratumoral hypoxia in some preclinical and clinical studies. Emerging reports suggest that Delta-like ligand 4 (Dll4) is a promising target of angiogenesis inhibition to augment the effects of VEGF inhibitors. To evaluate the effects of simultaneous blockade against VEGF and Dll4, we developed a bispecific antibody, HD105, targeting VEGF and Dll4. The HD105 bispecific antibody, which is composed of an anti-VEGF antibody (bevacizumab-similar) backbone C-terminally linked with a Dll4-targeting single-chain variable fragment, showed potent binding affinities against VEGF (KD: 1.3 nM) and Dll4 (KD: 30 nM). In addition, the HD105 bispecific antibody competitively inhibited the binding of ligands to their receptors, i.e., VEGF to VEGFR2 (EC50: 2.84 ± 0.41 nM) and Dll4 to Notch1 (EC50: 1.14 ± 0.06 nM). Using in vitro cell-based assays, we found that HD105 effectively blocked both the VEGF/VEGFR2 and Dll4/Notch1 signaling pathways in endothelial cells, resulting in a conspicuous inhibition of endothelial cell proliferation and sprouting. HD105 also suppressed Dll4-induced Notch1-dependent activation of the luciferase gene. In vivo xenograft studies demonstrated that HD105 more efficiently inhibited the tumor progression of human A549 lung and SCH gastric cancers than an anti-VEGF antibody or anti-Dll4 antibody alone. In conclusion, HD105 may be a novel therapeutic bispecific antibody for cancer treatment.  相似文献   

14.
The effect of blocking VEGF activity in solid tumors extends beyond inhibition of angiogenesis. However, no studies have compared the effectiveness of mechanistically different anti-VEGF inhibitors with respect to changes in tumor growth and alterations in the tumor microenvironment. In this study we use three distinct breast cancer models, a MDA-MB-231 xenograft model, a 4T1 syngenic model, and a transgenic model using MMTV-PyMT mice, to explore the effects of various anti-VEGF therapies on tumor vasculature, immune cell infiltration, and cytokine levels. Tumor vasculature and immune cell infiltration were evaluated using immunohistochemistry. Cytokine levels were evaluated using ELISA and electrochemiluminescence. We found that blocking the activation of VEGF receptor resulted in changes in intra-tumoral cytokine levels, specifically IL-1β, IL-6 and CXCL1. Modulation of the level these cytokines is important for controlling immune cell infiltration and ultimately tumor growth. Furthermore, we demonstrate that selective inhibition of VEGF binding to VEGFR2 with r84 is more effective at controlling tumor growth and inhibiting the infiltration of suppressive immune cells (MDSC, Treg, macrophages) while increasing the mature dendritic cell fraction than other anti-VEGF strategies. In addition, we found that changes in serum IL-1β and IL-6 levels correlated with response to therapy, identifying two possible biomarkers for assessing the effectiveness of anti-VEGF therapy in breast cancer patients.  相似文献   

15.
The present study was undertaken to investigate the role of vascular endothelial growth factor (VEGF) in luteal angiogenesis and the regulation of VEGF in the corpus luteum (CL) during mid-pregnancy in rats. Protein concentrations and mRNA levels of VEGF in the CL significantly increased from Day 9 to Day 12 and remained at the same level as Day 12 until Day 15. To study whether estradiol is involved in VEGF expression between Day 12 and Day 15, rats undergoing hypophysectomy-hysterectomy on Day 12 were treated with estradiol until Day 15. Protein concentrations and mRNA levels of VEGF in the CL were significantly decreased by hypophysectomy-hysterectomy, and this inhibitory effect was completely reversed by estradiol treatment. Changes in vascular density in the CL were parallel to those in VEGF expression. To examine whether the effect of estradiol is mediated by VEGF, anti-VEGF antibody was administered to hypophysectomized-hysterectomized rats simultaneously with estradiol. The recovery in the vascular density, CL weight, and serum progesterone concentration caused by estradiol was significantly inhibited by the anti-VEGF antibody treatment. In conclusion, the present study has demonstrated that VEGF contributes to luteal angiogenesis, CL development, and progesterone production during mid-pregnancy in rats and that luteal VEGF expression is increased by estradiol.  相似文献   

16.
Summary VEGF (vascular endothelial growth factor) overproduction has been identified as a major factor underlying pathological angiogenesis in vivo, including such conditions as psoriasis, macular degeneration, and tumor proliferation. Endothelial cell tyrosine kinase receptors, KDR and Flt-1, have been implicated in VEGF responses including cellular migration, proliferation, and modulation of vascular permeability. Therefore, agents that limit VEGF-cellular interaction are likely therapeutic candidates for VEGF-mediated disease states (particularly agents blocking activity of VEGF165, the most frequently occurring VEGF isoform). To that end, a nuclease-resistant, VEGF165-specific aptamer NX1838 (2′-fluoropyrimidine, RNA-based oligonucleotide/40-kDa-PEG) was developed. We have assessed NX1838 inhibition of a variety of cellular events associated with VEGF, including cellular binding, signal transduction, calcium mobilization, and induction of cellular proliferation. Our data indicate that NX1838 inhibits binding of VEGF to HUVECs (human umbilical vein endothelial cells) and dose-dependently prevents VEGF-mediated phosphorylation of KDR and PLCγ, calcium flux, and ultimately VEGF-induced cell proliferation. NX1838-inhibition of VEGF-mediated cellular events was comparable to that observed with anti-VEGF monoclonal antibody, but was ineffective as an inhibitor of VEGF121-induced HUVEC proliferation. These findings, coupled with nuclease stability of the molecule, suggest that NX1838 may provide therapeutic utility in vivo.  相似文献   

17.

Background

The Notch ligand Delta-like 4 (Dll4) is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF) and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC).

Methods and Results

Severe combined immunodeficiency (SCID) mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI) examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36–62%) that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38–54%) and ziv-aflibercept (46%). Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72–80% growth inhibition), including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model.

Conclusions

Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC.  相似文献   

18.
The establishment of a functional, integrated vascular system is instrumental for tissue growth and homeostasis. Without blood vessels no adequate nutrition and oxygen would be provided to cells, nor could the undesired waste products be efficiently removed. Blood vessels constitute therefore one of the largest and most complex body network whose assembly depends on the precise balance of growth factors acting in a complementary and coordinated manner with cells of several identities. However, the vessels that are crucial for life can also foster death, given their involvement in cancer progression towards malignancy and metastasis. Targeting tumor vasculature has thus arisen as an appealing anti-cancer therapeutic approach. Since the milestone achievements that vascular endothelial growth factor (VEGF) blockade suppressed angiogenesis and tumor growth in mice and prolonged the survival of cancer patients when administered in combination with chemotherapy, the clinical development of anti-VEGF(R) drugs has accelerated remarkably. FDA has approved the use of bevacizumab – a humanized monoclonal antibody against VEGF – in colorectal, lung and metastatic breast cancers in combination with standard chemotherapy. Additional broad-spectrum VEGF receptor tyrosine kinase inhibitors, such as sunitinib and sorafenib, are used in monotherapy for metastatic renal carcinoma, while sunitinib is also approved for imatinib resistant gastrointestinal stromal tumors and sorafenib for advanced stage hepatocellular carcinoma. Nevertheless, the survival benefit offered by VEGF(R) blockers, either as single agents or in combination with chemotherapy, is calculated merely in the order of months. Posterior studies in preclinical models have reported that despite reducing primary tumor growth, the inhibition of VEGF increased tumor invasiveness and metastasis. The clinical implications of these findings urge the need to reconcile these conflicting results. Anti-angiogenic therapy represents a significant step forth in cancer therapy and in our understanding of cancer biology, but it is also clear that we need to learn how to use it. What is the biological consequence of VEGF-blockade? Does VEGF inhibition starve the tumor to death – as initially postulated – or does it rather foster malignancy? Can anti-VEGF(R) therapy favor tumor vessel formation by VEGF-independent means? Tumors are very diverse and plastic entities, able to adapt to the harshest conditions; this is also reflected by the tumor vasculature. Lessons from the bench to the bedside and vice versa have taught us that the diversity of signals underlying tumor vessel growth will likely be responsive (or resistant) to distinct therapeutic approaches. In this review, we propose a reflection of the different strategies tumors use to grow blood vessels and how these can have impact on the (un)success of current anti-angiogenic therapies.  相似文献   

19.
We generated VEGF-null fibrosarcomas from VEGF-loxP mouse embryonic fibroblasts to investigate the mechanisms of tumor escape after VEGF inactivation. These cells were found to be tumorigenic and angiogenic in vivo in spite of the absence of tumor-derived VEGF. However, VEGF derived from host stroma was readily detected in the tumor mass and treatment with a newly developed anti-VEGF monoclonal antibody substantially inhibited tumor growth. The functional significance of stroma-derived VEGF indicates that the recruitment of stromal cells is critical for the angiogenic and tumorigenic properties of these cells. Here we identified PDGF AA as the major stromal fibroblast chemotactic factor produced by tumor cells, and demonstrated that disrupting the paracrine PDGFR alpha signaling between tumor cells and stromal fibroblasts by soluble PDGFR alpha-IgG significantly reduced tumor growth. Thus, PDGFR alpha signaling is required for the recruitment of VEGF-producing stromal fibroblasts for tumor angiogenesis and growth. Our findings highlight a novel aspect of PDGFR alpha signaling in tumorigenesis.  相似文献   

20.
It is now fully recognized that along with multiple physiological functions, angiogenesis is also involved in the fundamental process and pathobiology of several disorders including cancer. Recent studies have fully established the role of angiogenesis in cancer progression as well as invasion and metastasis. Consequently, many therapeutic agents such as monoclonal antibodies targeting angiogenesis pathway have been introduced in clinic with the hope for improving the outcomes of cancer therapy. Bevacizumab (Avastin®) was the first anti-vascular endothelial growth factor (VEGF) targeting monoclonal antibody developed with this purpose and soon received its accelerated US Food and Drug Administration (FDA) approval for treatment of patients with metastatic breast cancer in 2008. However, the failure to meet expecting results in different follow-up studies, forced FDA to remove bevacizumab approval for metastatic breast cancer. Investigations have now revealed that while suppressing VEGF pathway initially decreases tumor progression rate and vasculature density, activation of several interrelated pathways and signaling molecules following VEGF blockade compensate the insufficiency of VEGF and initially blocked angiogenesis, explaining in part the failure observed with bevacizumab single therapy. In present review, we introduce some of the main pathways and signaling molecules involved in angiogenesis and then propose how their interconnection may result in development of resistance to bevacizumab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号