首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Summary The role of collagen in microvascular growth was investigated using the aortic ring model of angiogenesis. Collagen production by vasoformative outgrowths in plasma clot culture of rat aorta was either stimulated with ascorbic acid or inhibited with the proline analogue cis-hydroxyproline. Microvessels proliferating in the absence of ascorbic acid supplements became ectatic and developed large lumina. In contrast, newly formed microvessels in the presence of ascorbic acid remained small and maintained thin lumina throughout the angiogenic process. Biochemical studies demonstrated enhanced collagen production and deposition in cultures treated with ascorbic acid. Ultrastructural studies of these cultures showed a marked increase in newly formed interstitial collagen in the perivascular matrix and in regions of the plasma clot containing nonendothelial mesenchymal cells. Small microvessels with thin lumina similar to the ones observed in ascorbic acid-treated plasma clot cultures were obtained by growing aortic explants in gels of interstitial collagen in the absence of ascorbic acid. Inhibition of collagen production with the proline analogue cis-hydroxyproline had a marked anti-angiogenic effect in both plasma clot and collagen gel cultures. The anti-angiogenic effect of cis-hydroxyproline was abolished by addingl-proline to the culture medium, thereby restoring normal metabolism. These results support the hypothesis that angiogenesis is regulated by collagen production and suggest that the size of newly formed microvessels is influenced by the degree of collagenization of the extracellular matrix.  相似文献   

3.
The formation of microvascular sprouts during angiogenesis requires that endothelial cells move through an extracellular matrix. Endothelial cells that migrate in vitro generate forces of traction that compress (i.e., contract) and reorganize vicinial extracellular matrix, a process that might be important for angiogenic invasion and morphogenesis in vivo. To study potential relationships between traction and angiogenesis, we have measured the contraction of fibrillar type I collagen gels by endothelial cells in vitro. We found that the capacity of bovine aortic endothelial (BAE) cells to remodel type I collagen was similar to that of human dermal fibroblasts—a cell type that generates high levels of traction. Contraction of collagen by BAE cells was stimulated by fetal bovine serum, human plasma-derived serum, bovine serum albumin, and the angiogenic factors phorbol myristate acetate and basic fibroblast growth factor (bFGF). In contrast, fibronectin and immunoglobulin from bovine serum, several nonserum proteins, and polyvinyl pyrrolidone (a nonproteinaceous substitute for albumin in artificial plasma) were not stimulatory. Contraction of collagen by BAE cells was diminished by an inhibitor of metalloproteinases (1, 10-phenanthroline) at concentrations that were not obviously cytotoxic. Zymography of proteins secreted by BAE cells that had contracted collagen gels revealed matrix metalloproteinase 2. Subconfluent BAE cells that were migratory and proliferating were more effective contractors of collagen than were quiescent, confluent cells of the same strain. Moreover, bovine capillary endothelial cells contracted collagen gels to a greater degree than was seen with BAE cells. Collectively, our observations indicate that traction-driven reorganization of fibrillar type I collagen by endothelial cells is sensitive to different mediators, some of which, e.g., bFGF, are known regulators of angiogenesis in vivo. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Regulation of angiogenesis by extracellular matrix   总被引:23,自引:0,他引:23  
During angiogenesis, endothelial cell growth, migration, and tube formation are regulated by pro- and anti-angiogenic factors, matrix-degrading proteases, and cell-extracellular matrix interactions. Temporal and spatial regulation of extracellular matrix remodeling events allows for local changes in net matrix deposition or degradation, which in turn contributes to control of cell growth, migration, and differentiation during different stages of angiogenesis. Remodeling of the extracellular matrix can have either pro- or anti-angiogenic effects. Extracellular matrix remodeling by proteases promotes cell migration, a critical event in the formation of new vessels. Matrix-bound growth factors released by proteases and/or by angiogenic factors promote angiogenesis by enhancing endothelial migration and growth. Extracellular matrix molecules, such as thrombospondin-1 and -2, and proteolytic fragments of matrix molecules, such as endostatin, can exert anti-angiogenic effects by inhibiting endothelial cell proliferation, migration and tube formation. In contrast, other matrix molecules promote endothelial cell growth and morphogenesis, and/or stabilize nascent blood vessels. Hence, extracellular matrix molecules and extracellular matrix remodelling events play a key role in regulating angiogenesis.  相似文献   

5.
6.
Anti-angiogenic therapy is currently one of most active fields in cancer research. The initial strategies, which were aimed at inhibiting tumor vascularization, included upregulation of endogenous inhibitors and blocking of the signals delivered by angiogenic factors. However, interactions between endothelial cells and their surrounding extracellular matrix also play a crucial role in modulation of the angiogenic process. Compounds that target either the integrins implicated in these interactions or the proteases responsible for matrix remodeling have been shown to halt tumor growth in murine models and are now in clinical trials. However, little attention has been paid to integrin ligands, the extracellular matrix components that support endothelial cell survival, movement and reorganization. Here, we summarize the current knowledge about these angiogenesis inhibitors and propose a novel therapeutic approach based on the blocking of crucial binding sites present in the extracellular matrix.  相似文献   

7.
Ephrin-B2 is a transmembrane ligand that is specifically expressed on arteries but not veins and that is essential for cardiovascular development. However, ephrin-B2 is also expressed in nonvascular tissues and interacts with multiple EphB class receptors expressed in both endothelial and nonendothelial cell types. Thus, the identity of the relevant receptor for ephrin-B2 and the site(s) where these molecules interact to control angiogenesis were not clear. Here we show that EphB4, a specific receptor for ephrin-B2, is exclusively expressed by vascular endothelial cells in embryos and is preferentially expressed on veins. A targeted mutation in EphB4 essentially phenocopies the mutation in ephrin-B2. These data indicate that ephrin-B2-EphB4 interactions are intrinsically required in vascular endothelial cells and are consistent with the idea that they mediate bidirectional signaling essential for angiogenesis.  相似文献   

8.
We have shown previously that the tumor promoter phorbol myristate acetate (PMA) induces capillary endothelial cells grown on the surface of three-dimensional collagen gels to invade the underlying matrix as capillary-like tubular structures, a phenomenon mimicking angiogenic processes that occur in vivo (Montesano and Orci: Cell 42:469, 1985). To establish whether the potential to invade the extracellular matrix as capillary-like sprouts is restricted to microvascular endothelial cells or is also shared by large vessel endothelium, we have examined the response to PMA of endothelial cells isolated from the human umbilical vein and the calf pulmonary artery. The results of these experiments show that both types of macrovascular endothelial cells are able to penetrate into collagen gels as vessel-like tubes following treatment with PMA. This demonstrates that endothelial cells derived from large vessels can, in response to appropriate signals, express invasive properties thought to be associated specifically with capillary endothelial cells in vivo.  相似文献   

9.
Angiogenesis is the process by which new blood vessels arise from the pre-existing vasculature. Human endothelial cells are known to be involved in three key cellular processes during angiogenesis: increased cell proliferation, degradation of the extracellular matrix during cell migration, and the survival of apoptosis. The above processes depend upon the presence of growth factors, such as vascular endothelial growth factor isoform 165 (VEGF(165)) that is released from the extracellular matrix as it is being degraded or secreted from activated endothelial cells. Thus, the goal of the current study is to develop a system with a backbone of polyethylene glycol (PEG) and grafted angiogenic signals to compare the initial angiogenic response of human umbilical vein endothelial cells (hUVEC) or human microvascular endothelial cells (hMEC). Adhesion ligands (PEG-RGDS) for cell attachment and PEG-modified VEGF(165) (PEG-VEGF(165)) are grafted into the hydrogels to encourage the angiogenic response. Our data suggest that our biomimetic system is equally effective in stimulating proliferation, migration, and survival of apoptosis in hMEC as compared to the response to hUVEC.  相似文献   

10.
Interactions between endothelial cells and the surrounding extracellular matrix are continuously adapted during angiogenesis, from early sprouting through to lumen formation and vessel maturation. Regulated control of these interactions is crucial to sustain normal responses in this rapidly changing environment, and dysfunctional endothelial cell behaviour results in angiogenic disorders. The proteoglycan decorin, an extracellular matrix component, is upregulated during angiogenesis. While it was shown previously that the absence of decorin leads to dysregulated angiogenesis in vivo, the molecular mechanisms were not clear. These abnormal endothelial cell responses have been attributed to indirect effects of decorin; however, our recent data provides evidence that decorin directly regulates endothelial cell-matrix interactions. This data will be discussed in conjunction with findings from previous studies, to better understand the role of this proteoglycan in angiogenesis.  相似文献   

11.
In vitro angiogenesis assays have shown that tubulogenesis of endothelial cells within biogels, like collagen or fibrin gels, only appears for a critical range of experimental parameter values. These experiments have enabled us to develop and validate a theoretical model in which mechanical interactions of endothelial cells with extracellular matrix influence both active cell migration--haptotaxis--and cellular traction forces. Depending on the number of cells, cell motility and biogel rheological properties, various 2D endothelial patterns can be generated, from non-connected stripe patterns to fully connected networks, which mimic the spatial organization of capillary structures. The model quantitatively and qualitatively reproduces the range of critical values of cell densities and fibrin concentrations for which these cell networks are experimentally observed. We illustrate how cell motility is associated to the self-enhancement of the local traction fields exerted within the biogel in order to produce a pre-patterning of this matrix and subsequent formation of tubular structures, above critical thresholds corresponding to bifurcation points of the mathematical model. The dynamics of this morphogenetic process is discussed in the light of videomicroscopy time lapse sequences of endothelial cells (EAhy926 line) in fibrin gels. Our modeling approach also explains how the progressive appearance and morphology of the cellular networks are modified by gradients of extracellular matrix thickness.  相似文献   

12.
13.
Blood vessels are essential conduits of nutrients and oxygen throughout the body. The formation of these vessels involves angiogenic sprouting, a complex process entailing highly integrated cell behaviors and signaling pathways. In this review, we discuss how endothelial cells initiate a vessel sprout through interactions with their environment and with one another, particularly through lateral inhibition. We review the composition of the local environment, which contains an initial set of guidance cues to facilitate the proper outward migration of the sprout as it emerges from a parent vessel. The long-range guidance and sprout stability cues provided by soluble molecules, extracellular matrix components, and interactions with other cell types are also discussed. We also examine emerging evidence for mechanisms that govern sprout fusion with its target and lumen formation.  相似文献   

14.
Angiogenesis, the formation of new blood vessels, is an essential feature of malignant tumour development. Gamma linolenic acid (GLA), a n-6 polyunsaturated fatty acid (PUFA), inhibits the growth and metastasis of a variety of tumour cells, including breast, prostate, pancreatic cancer and hepatoma cells and also has anti-metastatic effects on endothelial cells. In the current study, we tested whether GLA inhibited angiogenesis induced by tumour cells. A rat aortic ring assay and in vitro tube formation of human vascular endothelial cells were used to determine angiogenesis (spontaneous, angiogenic factor- and tumour cells-induced). Inclusion of GLA in this 3-D matrix culture system significantly inhibited angiogenesis from aortic rings in a concentration-dependent manner. The results from tube formation of vascular endothelial cell further confirmed that GLA suppressed angiogenesis. Furthermore, in the cell motility assay (phagokinetic assay and endothelial wounding assay), a significant reduction of the motility of vascular endothelial cells by GLA was seen. It is concluded that gamma linolenic acid inhibits angiogenic factor and tumour-induced angiogenesis in vitro at least in part via its inhibitory effect on the motility of vascular endothelial cells.  相似文献   

15.
The prevalence of overweight and obesity is rapidly increasing world wide. Numerous epidemiological studies have shown that obesity is a risk factor for postmenopausal breast cancer and relapse. However, the biological factors that drive the growth and progression of these tumors and how obesity contributes to the tumor microenvironment are poorly understood. Tumor development and metastasis are dependent on the process of angiogenesis or the formation of new blood vessels. More importantly, a ready supply of adipose tissue-derived angiogenic adipokines, notably VEGF and leptin, and the production of inflammatory cytokines by infiltrating macrophages that occurs in adipose tissues with obesity, promotes the paracrine stimulation of vascular endothelial cell growth needed for adipogenesis, while maintaining a microenvironment that is favorable for breast tumorigenesis.  相似文献   

16.
We have previously shown that the tumor promoter 4 beta-phorbol 12-myristate 13-acetate (PMA) induces capillary endothelial cells grown to confluency on the surface of three-dimensional collagen gels to invade the underlying matrix and to form capillary-like tubular structures, a phenomenon mimicking angiogenic processes that occur in vivo (Montesano and Orci: Cell, 42:469-477, 1985). Since angiogenesis frequently occurs within a fibrin-rich extracellular matrix, we have examined the ability of PMA-treated endothelial cells to invade fibrin gels. Control endothelial cells grown on fibrin gels formed a confluent monolayer on the gel surface and did not invade the underlying matrix. Treatment of the cultures with PMA resulted in a progressive lysis of the substrate without invasion of the fibrin matrix. However, if the cells were treated with PMA either in the presence of fibrinolytic inhibitors (Trasylol, epsilon-aminocaproic acid) or in the absence of detectable plasminogen, dissolution of the substrate was prevented, and the endothelial cells invaded the fibrin gel, forming vessel-like tubular structures similar to those previously observed with collagen gels. These results demonstrate that the invasive and morphogenetic events induced by PMA do not necessarily require an interaction between endothelial cells and collagen fibrils but can also occur with other biologically relevant substrata. They also suggest (1) that invasion may occur via a plasmin-independent mechanism and (2) that in vivo, neutralization of excess proteolytic activity may play an important permissive role in angiogenesis and other invasive processes by preventing uncontrolled matrix degradation.  相似文献   

17.
Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo. Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti‐angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor‐α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance.  相似文献   

18.

Background

Myeloid cells have been associated with physiological and pathological angiogenesis, but their exact functions in these processes remain poorly defined. Monocyte-derived tissue macrophages of the CNS, or microglial cells, invade the mammalian retina before it becomes vascularized. Recent studies correlate the presence of microglia in the developing CNS with vascular network formation, but it is not clear whether the effect is directly caused by microglia and their contact with the endothelium.

Methodology/Principal Findings

We combined in vivo studies of the developing mouse retina with in vitro studies using the aortic ring model to address the role of microglia in developmental angiogenesis. Our in vivo analyses are consistent with previous findings that microglia are present at sites of endothelial tip-cell anastomosis, and genetic ablation of microglia caused a sparser vascular network associated with reduced number of filopodia-bearing sprouts. Addition of microglia in the aortic ring model was sufficient to stimulate vessel sprouting. The effect was independent of physical contact between microglia and endothelial cells, and could be partly mimicked using microglial cell-conditioned medium. Addition of VEGF-A promoted angiogenic sprouts of different morphology in comparison with the microglial cells, and inhibition of VEGF-A did not affect the microglia-induced angiogenic response, arguing that the proangiogenic factor(s) released by microglia is distinct from VEGF-A. Finally, microglia exhibited oriented migration towards the vessels in the aortic ring cultures.

Conclusions/Significance

Microglia stimulate vessel sprouting in the aortic ring cultures via a soluble microglial-derived product(s), rather than direct contact with endothelial cells. The observed migration of microglia towards the growing sprouts suggests that their position near endothelial tip-cells could result from attractive cues secreted by the vessels. Our data reveals a two-way communication between microglia and vessels that depends on soluble factors and should extend the understanding of how microglia promote vascular network formation.  相似文献   

19.
In severe asthma, cytokines and growth factors contribute to the proliferation of smooth muscle cells and blood vessels, and to the increased extracellular matrix deposition that constitutes the process of airway remodeling. Vascular endothelial growth factor (VEGF), which regulates vascular permeability and angiogenesis, also modulates the function of nonendothelial cell types. In this study, we demonstrate that VEGF induces fibronectin secretion by human airway smooth muscle (ASM) cells. In addition, stimulation of ASM with VEGF activates ERK, but not p38MAPK, and fibronectin secretion is ERK dependent. Both ERK activation and fibronectin secretion appear to be mediated through the VEGF receptor flt-1, as evidenced by the effects of the flt-1-specific ligand placenta growth factor. Finally, we demonstrate that ASM cells constitutively secrete VEGF, which is increased in response to PDGF, transforming growth factor-beta, IL-1beta, and PGE(2). We conclude that ASM-derived VEGF, through modulation of the extracellular matrix, may play an important role in airway remodeling seen in asthma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号