首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DEAD-box proteins play specific roles in remodeling RNA or ribonucleoprotein complexes. Yet, in vitro, they generally behave as nonspecific RNA-dependent ATPases, raising the question of what determines their specificity in vivo. SrmB, one of the five Escherichia coli DEAD-box proteins, participates in the assembly of the large ribosomal subunit. Moreover, when overexpressed, it compensates for a mutation in L24, the ribosomal protein (r-protein) thought to initiate assembly. Here, using the tandem affinity purification (TAP) procedure, we show that SrmB forms a complex with r-proteins L4, L24 and a region near the 5′-end of 23S rRNA that binds these proteins. In vitro reconstitution experiments show that the stability of this complex reflects cooperative interactions of SrmB with L4, L24 and rRNA. These observations are consistent with an early role of SrmB in assembly and explain the genetic link between SrmB and L24. Besides its catalytic core, SrmB possesses a nonconserved C-terminal extension that, we show, is not essential for SrmB function and specificity. In this regard, SrmB differs from DbpA, another DEAD-box protein involved in ribosome assembly.  相似文献   

2.
Ribosome subunit assembly in bacteria is assisted by several non‐ribosomal proteins, the absence of which leads to assembly defects. The two DEAD‐box RNA helicases SrmB and DeaD/CsdA are required for efficient assembly of the ribosome large subunit, in particular at low temperature, but their sites of action on rRNA were not known until now. In this issue of Molecular Microbiology, Proux et al. show that SrmB acts far away from its tethering site on the assembly intermediate particle. A genetic screen identified mutations in complementary sequences of 23S and 5S rRNA that help to bypass SrmB deficiency, partially correcting the large subunit assembly defect. The results suggest that 5S rRNA and 23S rRNA can interact via base‐pairing, forming a non‐native structure that needs to be corrected. The authors discuss attractive hypotheses on SrmB acts during large subunit assembly.  相似文献   

3.
Ribosome assembly in Escherichia coli involves 54 ribosomal proteins and three RNAs. Whereas functional subunits can be reconstituted in vitro from the isolated components, this process requires long incubation times and high temperatures compared with the in vivo situation, suggesting that non-ribosomal factors facilitate assembly in vivo. Here, we show that SrmB, a putative DEAD-box RNA helicase, is involved in ribosome assembly. The deletion of the srmB gene causes a slow-growth phenotype at low temperature. Polysome profile analyses of the corresponding cells reveal a deficit in free 50S ribosomal subunits and the accumulation of a new particle sedimenting around 40S. Analysis of the ribosomal RNA and protein contents of the 40S particle indicates that it represents a large subunit that is incompletely assembled. In particular, it lacks L13, one of the five ribosomal proteins that are essential for the early assembly step in vitro. Sucrose gradient fractionation also shows that, in wild-type cells, SrmB associates with a pre50S particle. From our results, we propose that SrmB is involved in an early step of 50S assembly that is necessary for the binding of L13. This step may consist of a structural rearrangement that, at low temperature, cannot occur without the assistance of this putative RNA helicase.  相似文献   

4.
Chi W  He B  Mao J  Li Q  Ma J  Ji D  Zou M  Zhang L 《Plant physiology》2012,158(2):693-707
The chloroplast ribosome is a large and dynamic ribonucleoprotein machine that is composed of the 30S and 50S subunits. Although the components of the chloroplast ribosome have been identified in the last decade, the molecular mechanisms driving chloroplast ribosome biogenesis remain largely elusive. Here, we show that RNA helicase 22 (RH22), a putative DEAD RNA helicase, is involved in chloroplast ribosome assembly in Arabidopsis (Arabidopsis thaliana). A loss of RH22 was lethal, whereas a knockdown of RH22 expression resulted in virescent seedlings with clear defects in chloroplast ribosomal RNA (rRNA) accumulation. The precursors of 23S and 4.5S, but not 16S, rRNA accumulated in rh22 mutants. Further analysis showed that RH22 was associated with the precursors of 50S ribosomal subunits. These results suggest that RH22 may function in the assembly of 50S ribosomal subunits in chloroplasts. In addition, RH22 interacted with the 50S ribosomal protein RPL24 through yeast two-hybrid and pull-down assays, and it was also bound to a small 23S rRNA fragment encompassing RPL24-binding sites. This action of RH22 may be similar to, but distinct from, that of SrmB, a DEAD RNA helicase that is involved in the ribosomal assembly in Escherichia coli, which suggests that DEAD RNA helicases and rRNA structures may have coevolved with respect to ribosomal assembly and function.  相似文献   

5.
Escherichia coli contains five members of the DEAD-box RNA helicase family, a ubiquitous class of proteins characterized by their ability to unwind RNA duplexes. Although four of these proteins have been implicated in RNA turnover or ribosome biogenesis, no cellular function for the RhlE DEAD-box protein has been described as yet. During an analysis of the cold-sensitive growth defect of a strain lacking the DeaD/CsdA RNA helicase, rhlE plasmids were identified from a chromosomal library as multicopy suppressors of the growth defect. Remarkably, when tested for allele specificity, RhlE overproduction was found to exacerbate the cold-sensitive growth defect of a strain that lacks the SrmB RNA helicase. Moreover, the absence of RhlE exacerbated or alleviated the cold-sensitive defect of deaD or srmB strains, respectively. Primer extension and ribosome analysis indicated that RhlE regulates the accumulation of immature ribosomal RNA or ribosome precursors when deaD or srmB strains are grown at low temperatures. By using an epitope-tagged version of RhlE, the majority of RhlE in cell extracts was found to cosediment with ribosome-containing fractions. Since both DeaD and SrmB have been recently shown to function in ribosome assembly, these findings suggests that rhlE genetically interacts with srmB and deaD to modulate their function during ribosome maturation. On the basis of the available evidence, I propose that RhlE is a novel ribosome assembly factor, which plays a role in the interconversion of ribosomal RNA-folding intermediates that are further processed by DeaD or SrmB during ribosome maturation.  相似文献   

6.
Functional large ribosomal subunits of Thermus aquaticus can be reconstituted from ribosomal proteins and either natural or in vitro transcribed 23 S and 5 S rRNA. Omission of 5 S rRNA during subunit reconstitution results in dramatic decrease of the peptidyl transferase activity of the assembled subunits. However, the presence of some ribosome-targeted antibiotics of the macrolide, ketolide or streptogramin B groups during 50 S subunit reconstitution can partly restore the activity of ribosomal subunits assembled without 5 S rRNA. Among tested antibiotics, macrolide RU69874 was the most active: activity of the subunits assembled in the absence of 5 S rRNA was increased more than 30-fold if antibiotic was present during reconstitution procedure. Activity of the subunits assembled with 5 S rRNA was also slightly stimulated by RU69874, but to a much lesser extent, approximately 1.5-fold. Activity of the native T. aquaticus 50 S subunits incubated in the reconstitution conditions in the presence of RU69874 was, in contrast, slightly decreased. The presence of antibiotics was essential during the last incubation step of the in vitro assembly, indicating that drugs affect one of the last assembly steps. The 5 S rRNA was previously shown to form contacts with segments of domains II and V of 23 S rRNA. All the antibiotics which can functionally compensate for the lack of 5 S rRNA during subunit reconstitution interact simultaneously with the central loop in domain V (which is known to be a component of peptidyl transferase center) and a loop of the helix 35 in domain II of 23 S rRNA. It is proposed that simultaneous interaction of 5 S rRNA or of antibiotics with the two domains of 23 S rRNA is essential for the successful assembly of ribosomal peptidyl transferase center. Consequently, one of the functions of 5 S rRNA in the ribosome can be that of assisting the assembly of ribosomal peptidyl transferase by correctly positioning functionally important segments of domains II and V of 23 S rRNA.  相似文献   

7.
Ribosomal proteins L4 and L22 both have a globular domain that sits on the surface of the large ribosomal subunit and an extended loop that penetrates its core. The tips of both loops contribute to the lining of the peptide exit tunnel and have been implicated in a gating mechanism that might regulate the exit of nascent peptides. Also, the extensions of L4 and L22 contact multiple domains of 23S rRNA, suggesting they might facilitate rRNA folding during ribosome assembly. To learn more about the roles of these extensions, we constructed derivatives of both proteins that lack most of their extended loops. Our analysis of ribosomes carrying L4 or L22 deletion proteins did not detect any significant difference in their sedimentation property or polysome distribution. Also, the role of L4 in autogenous control was not affected. We conclude that these extensions are not required for ribosome assembly or for L4-mediated autogenous control of the S10 operon.  相似文献   

8.
RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (RbgA-F6A) that caused a severe growth defect. Analysis of these suppressors identified mutations in rplF, encoding ribosomal protein L6. The suppressor strains all accumulated a novel ribosome intermediate that migrates at 44S in sucrose gradients. All of the mutations cluster in a region of L6 that is in close contact with helix 97 of the 23S rRNA. In vitro maturation assays indicate that the L6 substitutions allow the defective RbgA-F6A protein to function more effectively in ribosome maturation. Our results suggest that RbgA functions to properly position L6 on the ribosome, prior to the incorporation of L16 and other late assembly proteins.  相似文献   

9.
10.
The ability of mutant 23 S ribosomal RNA to form particles with proteins of the large ribosomal subunitin vivowas studied. A series of overlapping deletions covering the entire 23 S rRNA, were constructed in the plasmid copy of anE. coli23 S rRNA gene. The mutant genes were expressedin vivousing an inducibletacpromoter. Mutant species of 23 S rRNA, containing deletions between positions 40 and 2773, were incorporated into stable ribonucleoprotein particles. In contrast, if one end of the 23 S rRNA was deleted, the mutant rRNA was unstable and did not form ribosomal particles. Protein composition of the mutant particles was specific; the presence of the primary rRNA-binding proteins corresponded to their known binding sites. Furthermore, several previously unknown ribosomal protein binding sites in 23 S rRNA were identified. Implications of the results on ribosome assembly are discussed.  相似文献   

11.
Escherichia coli ribosomal L20 is one of five proteins essential for the first reconstitution step of the 50S ribosomal subunit in vitro. It is purely an assembly protein, because it can be withdrawn from the mature subunit without effect on ribosome activity. In addition, L20 represses the translation of its own gene by binding to two sites in its mRNA. The first site is a pseudoknot formed by a base-pairing interaction between nucleotide sequences separated by more than 280 nucleotides, whereas the second site is an irregular helix formed by base-pairing between neighbouring nucleotide sequences. Despite these differences, the mRNA folds in such a way that both L20 binding sites share secondary structure similarity with the L20 binding site located at the junction between helices H40 and H41 in 23S rRNA. Using a set of genetic, biochemical, biophysical, and structural experiments, we show here that all three sites are recognized similarly by L20.  相似文献   

12.
We have used chemical modification to examine the conformation of 23 S rRNA in Escherichia coli ribosomes bearing erythromycin resistance mutations in ribosomal proteins L22 and L4. Changes in reactivity to chemical probes were observed at several nucleotide positions scattered throughout 23 S rRNA. The L4 mutation affects the reactivity of G799 and U1255 in domain II and that of A2572 in domain V. The L22 mutation influences modification in domain II at positions m5U747, G748, and A1268, as well as at A1614 in domain III and G2351 in domain V. The reactivity of A789 is weakly enhanced by both the L22 and L4 mutations. None of these nucleotide positions has previously been associated with macrolide antibiotic resistance. Interestingly, neither of the ribosomal protein mutations produces any detectable effects at or within the vicinity of A2058 in domain V, the site most frequently shown to confer macrolide resistance when altered by methylation or mutation. Thus, while L22 and L4 bind primarily to domain I of 23 S rRNA, erythromycin resistance mutations in these ribosomal proteins perturb the conformation of residues in domains II, III and V and affect the action of antibiotics known to interact with nucleotide residues in the peptidyl transferase center of domain V. These results support the hypothesis that ribosomal proteins interact with rRNA at multiple sites to establish its functionally active three-dimensional structure, and suggest that these antibiotic resistance mutations act by perturbing the conformation of rRNA.  相似文献   

13.
Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell.  相似文献   

14.
The synthesis of rRNA was unbalanced by the introduction of plasmids containing rRNA operons with large internal deletions. Significant unbalanced synthesis was achieved only when the deletions affected both 16S and 23S RNA genes or when the deletions affected the 23S RNA gene alone. Although large imbalances in rRNA synthesis resulted from deletions affecting 16S and 23S RNA genes or only 23S RNA genes, excess 16S RNA and defective rRNA species were rapidly degraded. Large imbalances in the synthesis of regions of rRNA did not result in significantly unbalanced synthesis of ribosomal proteins. It therefore is probable that excess intact 16S RNA is degraded because ribosomal proteins are not available for packaging the RNA into ribosomes. Defective RNA species also may be degraded for this reason or because proper ribosome assembly is prevented by the defects in RNA structure. We propose two possible explanations for the finding that unbalanced overproduction of binding sites for feedback ribosomal protein does not result in significant unbalanced translational feedback depression of ribosomal protein mRNAs.  相似文献   

15.
CsdA, a DEAD-box protein from Escherichia coli, has been proposed to participate in a variety of processes, such as translation initiation, gene regulation after cold-shock, mRNA decay and biogenesis of the small ribosomal subunit. Whether the protein really plays a direct role in these multiple processes is however, not clear. Here, we show that CsdA is involved in the biogenesis of the large rather than the small ribosomal subunit. Deletion of the csdA gene leads to a deficit in free 50S subunits at low temperatures and to the accumulation of a new particle sedimenting around 40S. Analysis of the RNA and protein contents of this particle indicates that it corresponds to a mis-assembled large subunit. Sucrose gradient fractionation shows that in wild-type cells CsdA associates mainly with a pre50S particle. Presumably the RNA helicase activity of CsdA permits a structural rearrangement during 50S biogenesis at low temperature. We showed previously that SrmB, another DEAD-box RNA helicase, is also involved in 50S assembly in E.coli. Our results suggest that CsdA is required at a later step than SrmB. However, over-expression of CsdA corrects the ribosome defect of the srmB-deleted strain, indicating that some functional overlap exists between the two proteins.  相似文献   

16.
Bacillus subtilis YlqF belongs to the Era/Obg subfamily of small GTP-binding proteins and is essential for bacterial growth. Here we report that YlqF participates in the late step of 50 S ribosomal subunit assembly. YlqF was co-fractionated with the 50 S subunit, depending on the presence of noncleavable GTP analog. Moreover, the GTPase activity of YlqF was stimulated specifically by the 50 S subunit in vitro. Dimethyl sulfate footprinting analysis disclosed that YlqF binds to a unique position in 23 S rRNA. Yeast two-hybrid data revealed interactions between YlqF and the B. subtilis L25 protein (Ctc). The interaction was confirmed by the pull-down assay of the purified proteins. Specifically, YlqF is positioned around the A-site and P-site on the 50 S subunit. Proteome analysis of the abnormal 50 S subunits that accumulated in YlqF-depleted cells showed that L16 and L27 proteins, located near the YlqF-binding domain, are missing. Our results collectively indicate that YlqF will organize the late step of 50 S ribosomal subunit assembly.  相似文献   

17.
Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.  相似文献   

18.
Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly.  相似文献   

19.
In all three domains of life ribosomal RNAs are extensively modified at functionally important sites of the ribosome. These modifications are believed to fine-tune the ribosome structure for optimal translation. However, the precise mechanistic effect of modifications on ribosome function remains largely unknown. Here we show that a cluster of methylated nucleotides in domain IV of 25S rRNA is critical for integrity of the large ribosomal subunit. We identified the elusive cytosine-5 methyltransferase for C2278 in yeast as Rcm1 and found that a combined loss of cytosine-5 methylation at C2278 and ribose methylation at G2288 caused dramatic ribosome instability, resulting in loss of 60S ribosomal subunits. Structural and biochemical analyses revealed that this instability was caused by changes in the structure of 25S rRNA and a consequent loss of multiple ribosomal proteins from the large ribosomal subunit. Our data demonstrate that individual RNA modifications can strongly affect structure of large ribonucleoprotein complexes.  相似文献   

20.
In Escherichia coli, rRNAs are initially transcribed with precursor sequences, which are subsequently removed through processing reactions. To investigate the role of precursor sequences, we analyzed ribosome assembly in strains containing mutations in the processing RNases. We observed that defects in 23S rRNA processing resulted in an accumulation of ribosomal subunits and caused a significant delay in ribosome assembly. These observations suggest that precursor residues in 23S rRNA control ribosome assembly and could be serving a regulatory role to couple ribosome assembly to rRNA processing. The possible mechanisms through which rRNA processing and ribosome assembly could be linked are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号