首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To study the cellular growth and morphology of Yarrowia lipolytica W29 and its lipase and protease production under increased air pressures. Methods and Results: Batch cultures of the yeast were conducted in a pressurized bioreactor at 4 and 8 bar of air pressure and the cellular behaviour was compared with cultures at atmospheric pressure. No inhibition of cellular growth was observed by the increase of pressure. Moreover, the improvement of the oxygen transfer rate (OTR) from the gas to the culture medium by pressurization enhanced the extracellular lipase activity from 96·6 U l?1 at 1 bar to 533·5 U l?1 at 8 bar. The extracellular protease activity was reduced by the air pressure increase, thereby eliciting further lipase productivity. Cell morphology was slightly affected by pressure, particularly at 8 bar, where cells kept the predominant oval form but decreased in size. Conclusions: OTR improvement by total air pressure rise up to 8 bar in a bioreactor can be applied to the enhancement of lipase production by Y. lipolytica. Significance and Impact of the Study: Hyperbaric bioreactors can be successfully applied for yeast cells cultivation, particularly in high‐density cultures used for enzymes production, preventing oxygen limitation and consequently increasing overall productivity.  相似文献   

2.
In this work, the effects of agitation and aeration rates on aqueous two‐phase system (ATPS)‐based extractive fermentation of clavulanic acid (CA) by Streptomyces variabilis DAUFPE 3060 were investigated through a 22 full factorial design, where oxygen transfer rate (OTR) and oxygen uptake rate (OUR) were selected as the responses. Aeration rates significantly influenced cell growth, OUR, and CA yield, while OTR was practically the same in all the runs. Under the intermediate agitation (950 rpm) and aeration conditions (3.5 vvm) of the central point runs, it was achieved OTR of 1.617 ± 0.049 mmol L?1 h?1, OUR of 0.132 ± 0.030 mmol L?1 h?1, maximum CA production of 434 ± 4 mg L?1, oxygen mass transfer coefficient of 33.40 ± 2.01 s?1, partition coefficient of 66.5 ± 1.5, CA yield in the top and bottom phases of 75% ± 2% and 19% ± 1%, respectively, mass balance of 95% ± 4% and purification factor of 3.8 ± 0.1. These results not only confirmed the paramount role of O2 supply, broth composition and operational conditions in CA ATPS‐extractive fermentation, but also demonstrated the possibility of effectively using this technology as a cheap tool to simultaneously produce and recover CA. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1444–1452, 2016  相似文献   

3.
4.
The oxygen requirements for ethanol production from d-xylose (10 or 20 g l?1) by Pachysolen tannophilus have been determined by controlling the availability of oxygen to shake flasks. Under anaerobic conditions no ethanol was produced whereas under aerobic conditions mainly biomass was formed. Semi-anaerobic conditions resulted in maximum ethanol production. By varying the stirring speed of a fermenter and supplying air to the liquid surface at various rates, the oxygen transfer rate (OTR) was controlled under semi-anaerobic conditions. By increasing the OTR from 0.05 to 16.04 mmol l?1 h?1, the ethanol yield coefficient decreased from 0.28 to 0.18 while the cell yield coefficient increased from 0.14 to 0.22. The accumulation of polyols decreased from 0.88 to 0.56 g l?1 with increasing OTR. At OTRs between 0.09 and 1.18 mmol l?1 h?1, specific ethanol productivity attained a maximum value of 0.07 h?1 and decreased with either increasing or decreasing OTR. The results indicate that the OTR must be carefully controlled for efficient ethanol production from d-xylose by P. tannophilus.  相似文献   

5.
Growth of the antibody market has fueled the development of alternative expression systems such as glycoengineered yeast. Although intact antibody expression levels in excess of 1 g L?1 have been demonstrated in glycoengineered yeast, this is still significantly below the titers reported for antibody fragments in fungal expression systems. This study presents a simplified approach to estimate antibody secretion kinetics and oxygen uptake rate requirements as a function of growth‐rate controlled by a limiting methanol feed rate in glycoengineered Pichia pastoris. The yield of biomass from methanol and the specific oxygen requirements predicted in this study compare well with values reported in the literature for wild‐type P. pastoris, indicating the intrinsic nature of these yields independent of glycoengineering or the heterologous protein expressed. Specific productivity was found to be a non‐linear function of specific growth rate. Based on comparison with relationships between specific growth rate and specific productivity reported in the literature this correlation seems empirical in nature and cannot be established a priori. These correlations were then used in a simple mass balance based model to predict the cultivation performance of carbon limited cultivations under oxygen transfer limited conditions to indicate the usefulness of this approach to predict large scale performance and aid in process development. Biotechnol. Bioeng. 2010;106: 918–927. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Aims: To improve the yield and productivity of docosahexaenoic acid (DHA) by Schizochytrium sp. in terms of the analysis of microbial physiology. Methods and Results: A two‐stage oxygen supply control strategy, aimed at achieving high concentration and high productivity of DHA, was proposed. At the first 40 h, KLa was controlled at 150·1 h?1 to obtain high μ for cell growth, subsequently KLa was controlled at 88·5 h?1 to maintain high qp for high DHA accumulation. Finally, the maximum lipid, DHA content and DHA productivity reached 46·6, 17·7 g l?1 and 111 mg l?1 h?1, which were 43·83%, 63·88% and 32·14% over the best results controlled by constant KLa. Conclusions: This paper described a two‐stage oxygen supply control strategy based on the kinetic analysis for efficient DHA fermentation by Schizochytrium sp. Significance and Impact of the study: This study showed the advantage of two‐stage control strategy in terms of microbial physiology. As KLa is a scaling‐up parameter, the idea developed in this paper could be scaled‐up to industrial process and applied to other industrial biotechnological processes to achieve both high product concentration and high productivity.  相似文献   

7.
Summary Hansenula polymorpha was cultivated in a bubble column loop bioreactor employing ethanol and/or glucose as substrates. By varying the substrate concentration, the cultivations were carried out in non-limited, substrate limited and oxygen transfer limited growth ranges. The influence of the transitions from one range to another on reactor performance (OTR,k L a, a) and cell productivity () were investigated. When employing ethanol as a substrate, the concentration considerably influences the fluid dynamics, mass transfer phenomena and cell productivity. When employing glucose as a substrate, glucose repression occurs. At high glucose concentrations no transition into the oxygen transfer limited growth is possible. The ethanol produced during the glucose repression influences the fluid dynamics, mass transfer phenomena and productivity. With decreasing glucose concentration the glucose repression can be gradually eliminated.  相似文献   

8.
The total yield of ergosterol produced by the fermentation of the yeast Saccharomyces cerevisiae depends on the final amount of yeast biomass and the ergosterol content in the cells. At the same time ergosterol purity—defined as percentage of ergosterol in the total sterols in the yeast—is equally important for efficient downstream processing. This study investigated the development of both the ergosterol content and ergosterol purity in different physiological (metabolic) states of the microorganism S. cerevisiae with the aim of reaching maximal ergosterol productivity. To expose the yeast culture to different physiological states during fermentation an on‐line inference of the current physiological state of the culture was used. The results achieved made it possible to design a new production strategy, which consists of two preferable metabolic states, oxidative‐fermentative growth on glucose followed by oxidative growth on glucose and ethanol simultaneously. Experimental application of this strategy achieved a value of the total efficiency of ergosterol production (defined as product of ergosterol yield coefficient and volumetric productivity), 103.84 × 10?6 g L?1h?1, more than three times higher than with standard baker's yeast fed‐batch cultivations, which attained in average 32.14 × 10?6 g L?1h?1. At the same time the final content of ergosterol in dry biomass was 2.43%, with a purity 86%. These results make the product obtained by the proposed control strategy suitable for effective down‐stream processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:838–848, 2017  相似文献   

9.
The impact of mass transfer on productivity can become a crucial aspect in the fermentative production of bulk chemicals. For highly aerobic bioprocesses the oxygen transfer rate (OTR) and productivity are coupled. The achievable space time yields can often be correlated to the mass transfer performance of the respective bioreactor. The oxygen mass transfer capability of a jet aerated loop reactor is discussed in terms of the volumetric oxygen mass transfer coefficient kLa [h?1] and the energetic oxygen transfer efficiency E [kgO2 kW?1 h?1]. The jet aerated loop reactor (JLR) is compared to the frequently deployed aerated stirred tank reactor. In jet aerated reactors high local power densities in the mixing zone allow higher mass transfer rates, compared to aerated stirred tank reactors. When both reactors are operated at identical volumetric power input and aeration rates, local kLa values up to 1.5 times higher are possible with the JLR. High dispersion efficiencies in the JLR can be maintained even if the nozzle is supplied with pressurized gas. For increased oxygen demands (above 120 mmol L?1 h?1) improved energetic oxygen transfer efficiencies of up to 100 % were found for a JLR compared to an aerated stirred tank reactor operating with Rushton turbines.  相似文献   

10.
Polysialic acid (polySia), consisting of α‐(2,8)‐linked N‐acetylneuraminic acid monomers plays a crucial role in many biological processes. This study presents a novel process for the production of endogenous polySia using Escherichia coli K1 in a disposable bag reactor with wave‐induced mixing. Disposable bag reactors provide easy and fast production in terms of regulatory requirements as GMP, flexibility, and can easily be adjusted to larger production capacities not only by scale up but also by parallelization. Due to the poor oxygen transfer rate compared to a stirred tank reactor, pure oxygen was added during the cultivation to avoid oxygen limitation. During the exponential growth phase the growth rate was 0.61 h?1. Investigation of stress‐related product release from the cell surface showed no significant differences between the disposable bag reactor with wave‐induced mixing and the stirred tank reactor. After batch cultivation a cell dry weight of 6.8 g L?1 and a polySia concentration of 245 mg L?1 were reached. The total protein concentration in the supernatant was 132 mg L?1. After efficient and time‐saving downstream processing characterization of the final product showed a protein content of below 0.04 mgprotein/gpolySia and a maximal chain length of ~90 degree of polymerization.  相似文献   

11.
The green microalga Chlorella sp. TISTR 8990 was grown heterotrophically in the dark using various concentrations of a basal glucose medium with a carbon‐to‐nitrogen mass ratio of 29:1. The final biomass concentration and the rate of growth were highest in the fivefold concentrated basal glucose medium (25 g L?1 glucose, 2.5 g L?1 KNO3) in batch operations. Improving oxygen transfer in the culture by increasing the agitation rate and decreasing the culture volume in 500‐mL shake flasks improved growth and glucose utilization. A maximum biomass concentration of nearly 12 g L?1 was obtained within 4 days at 300 rpm, 30°C, with a glucose utilization of nearly 76% in batch culture. The total fatty acid (TFA) content of the biomass and the TFA productivity were 102 mg g?1 and 305 mg L?1 day?1, respectively. A repeated fed‐batch culture with four cycles of feeding with the fivefold concentrated medium in a 3‐L bioreactor was evaluated for biomass production. The total culture period was 11 days. A maximum biomass concentration of nearly 26 g L?1 was obtained with a TFA productivity of 223 mg L?1 day?1. The final biomass contained (w/w) 13.5% lipids, 20.8% protein and 17.2% starch. Of the fatty acids produced, 52% (w/w) were saturated, 41% were monounsaturated and 7% were polyunsaturated (PUFA). A low content of PUFA in TFA feedstock is required for producing high quality biodiesel. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1589–1600, 2017  相似文献   

12.
The growing interest in rosmarinic acid (RA), an ester of caffeic acid and 3,4‐dihydroxyphenyl lactic acid, is due to its biological activities, which include cognitive‐enhancing effects, slowing the development of Alzheimer's disease, cancer chemoprotection, and anti‐inflammatory activity. Inspired by the challenge of meeting the growing demand for this plant secondary metabolite, we developed a biotechnological platform based on cell suspension cultures of Satureja khuzistanica. The high amounts of RA produced by this system accumulated mainly inside the cells. To further improve production, two elicitors, 100 μM methyl jasmonate (MeJA) and 40 mM cyclodextrin (CD), were tested, separately and together. MeJA increased RA productivity more than 3‐fold, the elicited cultures achieving an RA production of 3.9 g L?1 without affecting biomass productivity. CD did not have a clear effect on RA production, and under the combined treatment of MeJA + CD only a small amount of RA was released to the medium. When the cell culture was transferred from a shake flask to a wave‐mixed bioreactor, a maximum RA production of 3.1 g L?1 and biomass productivity of 18.7 g L?1 d?1 was achieved under MeJA elicitation, demonstrating the suitability of S. khuzistanica cell suspensions for the biotechnological production of this bioactive plant secondary metabolite.  相似文献   

13.
The effect was studied of oxygen supply on the changes in total and specific rate of oxygen consumption by the cells, oxygen transfer rate, saturation concentrations of dissolved oxygen and the yields of batch and continuous cultivations. Experiments were done on the microorganismKlebsiella aerogenes CCM 2318 growing on synthetic glucose medium. Continuous cultivations were carried out at dilution rates of 0.96 and 0.178 h−1. The rate of oxygen transfer was determined by the sulphite method and the coefficient KLa was assessed using the dynamic method with a correction for changes in the saturations of dissolved oxygen. A lowered oxygen supply in batch cultivations caused deformations in the course of cell respiration. Comparison of results of batch and continuous cultivations showed that the highest yields Yx/s and Yx/o are attained at low dilution rates without oxygen limitation. Batch cultivations, on the other hand, exhibit the lowest yields and the highest cell respiration levels. In both types of cultivations, a respiration peak was ascertained under the conditions of growth limitation by oxygen.  相似文献   

14.
Polyhydroxyalkanoate (PHA) production via mixed microbial cultures (MMCs) can potentially decrease process operational costs as compared to conventional pure culture techniques. However, the volumetric productivity of PHA by MMCs must be augmented to increase its cost competitiveness. For this purpose, a three‐stage bioreactor system was operated in this study, with (i) anaerobic fermentation of molasses, (ii) culture selection, and (iii) PHA accumulation and harvesting stages. In stage 2, bioreactor operation with pH control at 8 led to twice the biomass concentration (up to 8 g VSS L?1, where VSS is the volatile suspended solids) as compared to operation without pH control (maximum pH 9). No loss in the specific PHA storage efficiency was observed (PHA content up to 57.5% and PHA storage rate up to 0.27 Cmol PHA Cmol X?1 h?1, where X is the active biomass), thereby resulting in twice the volumetric PHA production rate. The limited biomass growth at the higher pH level was not due to nutrient limitation, but likely to a shift in the microbial community. It is hypothesized that the increased enrichment of Azoarcus at pH 8 led to higher PHA productivity. pH control in the culture selection stage can lead to enhanced PHA production from MMCs, improving the viability of the process.  相似文献   

15.
The oxygen transfer rate (OTR) was evaluated as a scale-up criterion for alginate production in 3- and 14-L stirred fermentors. Batch cultures were performed at different agitation rates (200, 300, and 600 rpm) and airflow rates (0.25, 0.5, and 1 vvm), resulting in different maximum OTR levels (OTRmax). Although the two reactors had a similar OTRmax (19 mmol L?1 h?1) and produced the same alginate concentration (3.8 g L?1), during the cell growth period the maximum molecular weight of the alginate was 1,250 kDa in the 3-L stirred fermentor and 590 kDa in 14-L stirred fermentor. The results showed for the first time the evolution of the molecular weight of alginate and OTR profiles for two different scales of stirred fermentors. There was a different maximum specific oxygen uptake rate between the two fermenters, reaching 8.3 mmol g?1 h?1 in 3-L bioreactor and 10.6 mmol g?1 h?1 in 14-L bioreactor, which could explain the different molecular weights observed. These findings open the possibility of using $ q_{{{\text{O}}_{ 2} }} $ instead of OTRmax as a scaling criterion to produce polymers with similar molecular weights during fermentation.  相似文献   

16.
Pichia pastoris has become one of the major microorganisms for the production of proteins in recent years. This development was mainly driven by the readily available genetic tools and the ease of high‐cell density cultivations using methanol (or methanol/glycerol mixtures) as inducer and carbon source. To overcome the observed limitations of methanol use such as high heat development, cell lysis, and explosion hazard, we here revisited the possibility to produce proteins with P. pastoris using glucose as sole carbon source. Using a recombinant P. pastoris strain in glucose limited fed‐batch cultivations, very high‐cell densities were reached (more than 200 gCDW L?1) resulting in a recombinant protein titer of about 6.5 g L?1. To investigate the impact of recombinant protein production and high‐cell density fermentation on the metabolism of P. pastoris, we used 13C‐tracer‐based metabolic flux analysis in batch and fed‐batch experiments. At a controlled growth rate of 0.12 h?1 in fed‐batch experiments an increased TCA cycle flux of 1.1 mmol g?1 h?1 compared to 0.7 mmol g?1 h?1 for the recombinant and reference strains, respectively, suggest a limited but significant flux rerouting of carbon and energy resources. This change in flux is most likely causal to protein synthesis. In summary, the results highlight the potential of glucose as carbon and energy source, enabling high biomass concentrations and protein titers. The insights into the operation of metabolism during recombinant protein production might guide strain design and fermentation development. Biotechnol. Bioeng. 2010;107: 357–368. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Bioconversion of waste animal fat (WAF) to polyhydroxyalkanoates (PHAs) is an approach to lower the production costs of these plastic alternatives. However, the solid nature of WAF requires a tailor-made process development. In this study, a double-jacket feeding system was built to thermally liquefy the WAF to employ a continuous feeding strategy. During laboratory-scale cultivations with Ralstonia eutropha Re2058/pCB113, 70% more PHA (45 gPHA L−1) and a 75% higher space–time yield (0.63 gPHA L−1 h−1) were achieved compared to previously reported fermentations with solid WAF. During the development process, growth and PHA formation were monitored in real-time by in-line photon density wave spectroscopy. The process robustness was further evaluated during scale-down fermentations employing an oscillating aeration, which did not alter the PHA yield although cells encountered periods of oxygen limitation. Flow cytometry with propidium iodide staining showed that more than two-thirds of the cells were viable at the end of the cultivation and viability was even little higher in the scale-down cultivations. Application of this feeding system at 150-L pilot-scale cultivation yielded in 31.5 gPHA L−1, which is a promising result for the further scale-up to industrial scale.  相似文献   

18.
Microalgal starch is a potential feedstock for biofuel production. Nutrient stress is widely used to stimulate starch accumulation in microalgae. Cell growth and starch accumulation in the marine green microalga Tetraselmis subcordiformis were evaluated under extracellular phosphorus deprivation with initial cell densities (ICD) of 1.5, 3.0, 6.0, and 9.0?×?106 cells mL?1. The intracellular stored phosphorus supported cell growth when extracellular phosphorus was absent. The maximum starch content of 44.1 % was achieved in the lowest ICD culture, while the maximum biomass productivity of 0.71 g L?1 day?1, starch concentration of 1.6 g L?1, and starch productivity of 0.30 g L?1 day?1 were all obtained in the culture with the ICD of 3.0?×?106 cells mL?1. Appropriate ICD could be used to regulate the intracellular phosphorus concentration and maintain adequate photosynthetic activity to achieve the highest starch productivity, along with biomass and starch concentration. The recovery of phosphorus-deprived T. subcordiformis in medium containing 0.5, 1.0, or 6.0 mM KH2PO4 was also tested. Cell growth and starch accumulation ability could be recovered completely. A phosphorus pool in T. subcordiformis was shown to manipulate its metabolic activity under different environmental phosphorus availability. Though lower starch productivity and starch content were achieved under phosphorus deprivation compared with nitrogen- or sulfur-deprived conditions, the higher biomass and starch concentration make T. subcordiformis a good candidate for biomass and starch production under extracellular phosphorus deprivation.  相似文献   

19.
Optimal agitation and aeration conditions [assuring O2 transfer rates (OTR) from 12 to 179 mmol L?1 h?1] were determined for pectin lyase (PL) synthesis of an Aspergillus niger strain. Components of the pectolytic enzyme complex were also investigated in order to determine whether their O2 demand is identical with or different from that of pectin lyase. Should the latter be the case, a possibility would be given to produce enzyme complexes of different agitation and aeration conditions. According to our results, mycelium yield of Aspergillus niger attained a maximum at an OTR of 100 mmol L?1 h?1. The yields of the various pectolytic enzymes reached maxima at different OTRs. Pectin lyase production was the highest (0.555 µmol min?1 mL?1) at an OTR of 60 mmol L?1 h?1. Endopolygalacturonase (PG) production showed a maximum at the OTR of 49 mmol L?1 h?1 with a second peak at 100?135 mmol O2 L?1 h?1. Pectin esterase (PE) synthesis showed a maximum at on OTR of 12?14 mmol L?1 h?1, while both apple juice clarifying and macerating activities gave two maxima at 14 and 60 mmol L?1 h?1 due to the optima of PE and endo-PG. Macerating activity showed a high value at OTR optimal for PL production as well.  相似文献   

20.
Growing concerns over conventional plastic materials and their detrimental effects on the environment have paved the way for exploring alternative sources for the production of bioplastics/biodegradable polymers. Polyhydroxyalkanoates (PHAs), being eco-friendly, biodegradable and renewable, with material properties comparable to conventional plastics, have gained significant attention for research and commercial ventures. Bacteria are reported to be the most efficient microbes in accumulating PHAs, where productivity up to 3.2 g L?1 h?1 can be attained. PHA production from a bacterial system, however, is found to be expensive. Cyanobacteria are now considered as prospective photoautotrophic systems with many advantages over higher plants for low-cost production of PHAs. Cyanobacteria have the potential to synthesize polyhydroxybutyrate (PHB) under photoautotrophic and chemoheterotrophic conditions using carbon substrates like glucose, acetate, and maltose, individually or in combination. Several studies have shown improvement in PHA yield in cyanobacteria by limiting nutrients and/or addition of various precursors. Under optimized conditions, PHB and P(3HB-co-3HV) co-polymer accumulation can reach up to 85 and 77% of dry cell weight (dcw) with a productivity of 13.3 and 1.6 mg L?1 h?1, respectively. Despite the strategic increase in the potential of PHA accumulation in cyanobacteria, the productivity does not suffice for economic production. Therefore, economically feasible production of PHA in cyanobacteria might be attained by technological improvements in various aspects like improvement in mass cultivation techniques, alternate low-cost organic substrates, use of various metabolic inhibitors to stimulate intracellular accumulation, and by suppression and overexpression of specific biosynthetic pathways by genetic engineering approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号