首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A rapid method of isolation of fully active actinidin, the cysteine proteinase from Actinidia chinensis (Chinese gooseberry or kiwifruit), by covalent chromatography, was devised. 2. The active centre of actinidin was investigated by using n-propyl 2-pyridyl disulphide, 4-(N-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole and 4-chloro-7-nitrobenzofurazan as reactivity probes. 3. The presence in actinidin in weakly acidic media of an interactive system containing a nucleophilic sulphur atom was demonstrated. 4. The pKa values (3.1 and 9.6) that characterize this interactive system are more widely separated than those that characterize the interactive active centre systems of ficin (EC 3.4.22.3) and papain (EC 3.4.22.2) (3.8 and 8.6, and 3.9 and 8.8 respectively). 5. Actinidin was shown to resemble ficin rather than papain in (i) the disposition of the active-centre imidazole group with respect to hydrophobic binding areas, and (ii) the inability of the active-centre aspartic acid carboxy group to influence the reactivity of the active-centre thiol group at pH values of about 4. 6. The implications of the results for one-state and two-state mechanisms for cysteine-proteinase catalysis are discussed.  相似文献   

2.
The catalytic-site thiol groups of papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) were each labelled with the nitrobenzofurazan (Nbf) chromophore by reaction with 4-chloro-7-nitrobenzofurazan at pH 4.4. The electronic-absorption spectra of both labelled enzymes were determined in aqueous solution, in the pH ranges approx. 2-5 for S-Nbf-papain and approx. 3.3-8 for S-Nbf-actinidin, and for the latter also in 6 M-guanidinium chloride. The spectrum of S-Nbf-papain is characterized by lambda max. = 402 nm at pH 5 and by lambda max. = 422 nm at pH 2.18. The pH-dependent shift in lambda max. accompanies a pH-dependent change in A 430, the nature of which is consistent with its dependence on a single ionizing group with pKa 3.7. The spectrum of S-Nbf-actinidin is pH-independent in the pH range approx. 3.3-8 and is characterized by lambda max. = 413 nm. This absorption maximum shifts to 425 nm in 6M-guanidinium chloride. These results are discussed and related to those reported previously from studies on papain and actinidin with various reactivity probes. Despite the close similarity in the catalytic sites of papain and actinidin deduced from X-ray-diffraction studies, the considerable differences in their reactivity characteristics are mirrored by differences in their electric fields detected by the Nbf spectroscopic label. The microenvironment in the catalytic site of actinidin appears to favour the existence of ions significantly more than in the corresponding region in papain.  相似文献   

3.
The temperature-dependences of the second-order rate constants (k) of the reactions of the catalytic site thiol groups of two cysteine peptidases papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) with a series of seven 2-pyridyl disulphide reactivity probes (R-S-S-2-Py, in which R provides variation in recognition features) were determined at pH 6.7 at temperatures in the range 4-30 degrees C by stopped-flow methodology and were used to calculate values of DeltaS++, DeltaH++ and DeltaG++. The marked changes in DeltaS++ from negative to positive in the papain reactions consequent on provision of increase in the opportunities for key non-covalent recognition interactions may implicate microsite desolvation in binding site-catalytic site signalling to provide a catalytically relevant transition state. The substantially different behaviour of actinidin including apparent masking of changes in DeltaH++ by an endothermic conformational change suggests a difference in mechanism involving kinetically significant conformational change.  相似文献   

4.
1. The pH-dependence of the second-order rate constant (k) for the reaction of actinidin (EC 3.4.22.14) with 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide was determined and the contributions to k of various hydronic states were evaluated. 2. The data were used to assess the consequences for transition-state geometry of providing P2/S2 hydrophobic contacts in addition to hydrogen-bonding opportunities in the S1-S2 intersubsite region. 3. The P2/S2 contacts (a) substantially improve enzyme-ligand binding, (b) greatly enhance the contribution to reactivity of the hydronic state bounded by pKa 3 (the pKa characteristic of the formation of catalytic-site-S-/-ImH+ state) and pKa 5 (a relatively minor contributor in reactions that lack the P2/S2 contacts), such that the major rate optimum occurs at pH 4 instead of at pH 2.8-2.9, and (c) reveal the kinetic influence of a pKa approx. 6.3 not hitherto observed in reactions of actinidin. 4. Possibilities for the interplay of electrostatic effects and binding interactions in both actinidin and papain (EC 3.4.22.2) are discussed.  相似文献   

5.
The characteristics of actinidin (EC 3.4.22.14) and papain (EC 3.4.22.2), two cysteine proteinases whose catalytic-site regions appear to superimpose to a degree that approaches atomic co-ordinate accuracy of both crystal structures, were evaluated by determining (a) the pH-dependence in acid media of the acylation process of the catalytic act (k+2/Ks) using N alpha-benzoyl-L-arginine p-nitroanilide (L-Bz-Arg-Nan) as substrate and (b) the sensitivity of the reactivity of the catalytic-site thiol group and its pH-dependence to structural change in small, thiol-specific, two-protonic-state reactivity probes (2,2'-dipyridyl disulphide and methyl 2-pyridyl disulphide) where enzyme-probe contacts should be restricted to areas close to the catalytic site. Distortion of the catalytic sites of the two enzymes at pH less than 4 was evaluated over time-scales appropriate for both stopped-flow reactivity probe kinetics (less than or equal to 1-2 s) and steady-state substrate catalysis kinetics (3-5 min) by using the 2,2'-dipyridyl disulphide monocation as a titrant for non-distorted catalytic sites. This permitted a lower pH limit to be defined for valid kinetic analysis of both types. The behaviour of the enzymes at pH less than 4 requires a kinetic model in which the apparently biomolecular reaction of enzyme with probe reagent is separated from the process leading to loss of conformational integrity by a potentially reversible step. The acylation of actinidin with L-Bz-Arg-Nan in acidic media occurs in two protonic states, one produced by raising the pH across pKa less than 4 which probably characterizes the formation of -S-/-ImH+ ion pair (pKa approx. 3) and the other, of higher reactivity, produced by raising the pH across pKa 5.5, which may characterize rearrangement of catalytic-site geometry. The pH-dependence of the acylation of papain by L-Bz-Arg-Nan is quite different and is not influenced by protonic dissociation with pKa values in the range 5-6. The earlier conclusion that the acylation of papain depends on two protonic dissociations each with pKa approx. 4 was confirmed. This argument is now more firmly based because titration with 2,2'-dipyridyl disulphide permits the loss of conformational integrity to be taken into account in the analysis of the kinetic data at very low pH. Methyl 2-pyridyl disulphide was synthesized by reaction of pyridine-2-thione with methyl methanethiolsulphonate and its pKa at I = 0.1 was determined by spectral analysis at 307 nm to be 2.8.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A procedure for the isolation of cathepsin B (EC 3.4.22.1) and of cathepsin H from bovine spleen involving covalent chromatography by thiol-disulphide interchange and ion-exchange chromatography was devised. The stabilities of both cathepsins in alkaline media are markedly temperature-dependent, and reliable kinetic data can be obtained at pH values up to 8 by working at 25 degrees C with a continuous spectrophotometric assay. Both enzyme preparations contain only one type of thiol group as judged by reactivity characteristics towards 2,2'-dipyridyl disulphide at pH values up to 8; in each case this thiol group is essential for catalytic activity. Cathepsin H was characterized by kinetic analysis of the reactions of its thiol group with 2,2'-dipyridyl disulphide in the pH range approx. 2-8 and the analogous study on cathepsin B [Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] was extended to include reaction at pH values up to approx. 8. Cathepsin H, like the other cysteine proteinases, was shown to contain an interactive catalytic-site system in which the nucleophilic character of the sulphur atom is maintained in acidic media. The considerable differences in catalytic site characteristics detected by this two-protonic-state reactivity probe between cathepsin B, cathepsin H, papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) are discussed. Reaction with 2,2'-dipyridyl disulphide in acidic media, which is known to provide a rapid spectrophotometric active centre titration for many cysteine proteinases, is applicable to cathepsin H. This is useful because other active-centre titrations have proved unsuitable in view of the relatively low reactivity of the thiol group in cathepsin H.  相似文献   

7.
1. The proteinase papaya peptidase A, one of the major components of the latex of Carica papaya L., was shown to contain 1 thiol group per molecule; this thiol group is essential for catalytic activity and is part of the catalytic site. 2. The usefulness of two-protonic-state reactivity probes coupled with modification/activity-loss data in assigning a thiol group as an integral part of the catalytic site as against merely 'essential' for activity is discussed. 3. The active centre of papaya peptidase A was investigated by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes. The presence in the enzyme in weakly acidic media of an interactive system containing a nucleophile S atom (pKI3.9,pKII7.9) was demonstrated. 5. Papaya peptidase A resembles ficin (EC 3.4.22.3) and actinidin (the cysteine proteinase from Actinidin chinenis) in that it does not appear to possess a carboxy group able to influence the reactivity of the thiol group by change of ionization state at pH values of about 4, a situation that contrasts markedly with that which obtains in papain. 6. Implications of the results for possible variations in cysteine proteinase mechanism are discussed.  相似文献   

8.
Benzofuroxan reacts with the catalytic-site thiol group of actinidin (EC 3.4.22.14, the cysteine proteinase from Actinidia chinensis) to produce stoicheiometric amounts of the chromophoric reduction product, o-benzoquinone dioxime, and of a catalytically inactive derivative of actinidin that is devoid of thiol and that is assumed to contain, initially at least, the sulphenic acid of cysteine-25. A similar result applies also to papain (EC 3.4.22.2). The rate of o-benzoquinone dioxime formation is neither increased by inclusion of 2-mercaptoethanol or hydroxylamine in the reaction mixture nor decreased by changing the solvent from H2O to 2H2O. The change of solvent was shown to be without effect also on the rate of reaction of benzofuroxan with papain. These results suggest that the reactions of benzofuroxan with both actinidin and papain involve rate-determining attack of the catalytic-site thiol group to produce an intermediate adduct that then reacts rapidly with water to form enzyme sulphenic acid and o-benzoquinone dioxime. The pH-dependence of the second-order rate constant for the reaction of benzofuroxan with actinidin was determined in the pH range 4.3-10.2. In marked contrast with the analogous reaction of papain (reported by Shipton & Brocklehurst [(1977) Biochem. J. 167, 799-810] ) the pH-k profile for the actinidin reaction clearly contains a sigmoidal component with pKa 5.5, in which k increases with decreasing pH. These data together with the molecular pKa values for S-/ImH+ ion-pair formation and decomposition (3.0 and 9.6) suggest that the combined nucleophilic-electrophilic reactivity of the ion-pair of actinidin might be controlled by the state of ionization of another ionizing group, associated with the molecular pKa of 5.5. The pH-dependence of k for the reaction of actinidin with benzofuroxan at 25 degrees C at I 0.1 in aqueous buffers containing 6.7% (v/v) ethanol is probably adequately described by: k = k1/(1 + [H+]/KI + KII/[H+]) + k2/(1 + [H+]/KII + KIII/ [H+] + k3/(1 + [H+]/KIII) in which kI = 2.55 M -1 X s -1, k2 = 1.35 M -1, k3 = 0.93 M -1 X s -1, pKI = 3.0, pKII = 5.5 and pKIII = 9.6. By contrast, the analogous reaction of papain may be described by the same equation but with kI = 0, k2 = 2.2 M -1 X s -1, k3 = 1.3 M -1 X s -1, pKII = 3.6 and pKIII = 9.0.  相似文献   

9.
1. The kinetics of the reactions of the catalytic-site thiol groups of actinidin (the cysteine proteinase from Actinidia chinensis), ficin (EC 3.4.22.3), papain (EC 3.4.22.2) and papaya peptidase A (the other monothiol cysteine proteinase component of Carica papaya) with 4,4'-dipyridyl disulphide (4-Py-S-S-4-Py) and with 5,5'-dithiobis-(2-nitrobenzoate) dianion (Nbs22-) were studied in the pH range approx. 6-10. These studies provided the pH-independent second-order rate constants (k) for the reactions of the two probe reagents with the catalytic-site thiolate anions each in the environment of a neutral histidine side chain where an active-centre carboxy group would be ionized. 2. The ratio R equal to kNbs22-/k4-Py-S-S-4-Py provides an index of the catalytic-site solvation properties of the four cysteine proteinases and varies markedly from one enzyme to another, being 0.80 for papaya peptidase A (0.86 for the model thiol, 2-mercaptoethanol), 29 for actinidin, 0.18 for ficin and 0.015 for papain. These differences appear to derive mainly from the response of the enzyme to the negative charge on Nbs22-. 3. Possible implications of these results for (a) mechanisms of cysteine proteinase catalysis and (b) the possibility of using series of functionally related enzymes in the study of mechanism are discussed.  相似文献   

10.
1. The influence on the reactivities of the catalytic sites of papain (EC 3.4.22.2) and actinidin (3.4.22.14) of providing for interactions involving the S1-S2 intersubsite regions of the enzymes was evaluated by using as a series of thiol-specific two-hydronic-state reactivity probes: n-propyl 2-pyridyl disulphide (I) (a 'featureless' probe), 2-(acetamido)ethyl 2'-pyridyl disulphide (II) (containing a P1-P2 amide bond), 2-(acetoxy)ethyl 2'-pyridyl disulphide (III) [the ester analogue of probe (II)] and 2-carboxyethyl 2'-pyridyl disulphide N-methylamide (IV) [the retroamide analogue of probe (II)]. Syntheses of compounds (I), (III) and (IV) are reported. 2. The reactivities of the two enzymes towards the four reactivity probes (I)-(IV) and also that of papain towards 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide (VII) (containing both a P1-P2 amide bond and an L-phenylalanyl side chain as an occupant for the S2 subsite), in up to four hydronic (previously called protonic) states, were evaluated by analysis of pH-dependent stopped-flow kinetic data (for the release of pyridine-2-thione) by using an eight-parameter rate equation [described in the Appendix: Brocklehurst & Brocklehurst (1988) Biochem. J. 256, 556-558] to provide pH-independent rate constants and macroscopic pKa values. The analysis reveals the various ways in which the two enzymes respond very differently to the binding of ligands in the S1-S2 intersubsite regions despite the virtually superimposable crystal structures in these regions of the molecules. 3. Particularly striking differences between the behaviour of papain and that of actinidin are that (a) only papain responds to the presence of a P1-P2 amide bond in the probe such that a rate maximum at pH 6-7 is produced in the pH-k profile in place of the rate minimum, (b) only in the papain reactions does the pKa value of the alkaline limb of the pH-k profile change from 9.5 to approx. 8.2 [the value characteristic of a pH-(kcat./Km) profile] when the probe contains a P1-P2 amide bond, (c) only papain reactivity is affected by two positively co-operative hydronic dissociations with pKI congruent to pKII congruent to 4 and (d) modulation of the reactivity of the common -S(-)-ImH+ catalytic-site ion-pair (Cys-25/His-159 in papain and Cys-25/His-162 in actinidin) by hydronic dissociation with pKa approx. 5 is more marked and occurs more generally in reactions of actinidin than is the case for papain reactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We present an analysis of the electrostatic properties in the catalytic site of papain (EC 3.4.22.2), an archetype enzyme of the C1 cysteine proteinase family, and we investigate their possible role in the formation, stabilization and regulation of the Cys25((-))...His159((+)) catalytic ion pair. The electrostatic properties were computed using a reassociation method based in multicentered multipolar expansions obtained from ab initio quantum calculations of overlapping protein fragments. Solvent effects were introduced by coupling the use of multicentered multipolar expansions to two continuum boundary element methods to solve the Poisson and the linearized Poisson-Boltzmann equations. The electrostatic profile found in the proton transfer region of papain showed that this enzyme has a well-defined electrostatic environment to favor the formation and stabilization of the catalytic ion pair. The papain catalytic site electrostatic profile can be considered as an electrostatic fingerprint of the papain family with the following characteristics: (i) the presence of a net electric field highly aligned in the (Cys25)-SG-->(His159)-ND1 direction; (ii) the electrostatic profile has a saddle-point character; (iii) it is basically a local environmental effect. Furthermore, our analysis describes a possible regulatory mechanism (the E(SG-->ND1) attenuation effect) controlling the ion pair reactivity and permits to infer the Asp57 acidic residue as the most probable candidate to act as the electrostatic modulator.  相似文献   

12.
Chymopapain A was isolated from the dried latex of papaya (Carica papaya) by ion-exchange chromatography followed by covalent chromatography by thiol-disulphide interchange. The latter procedure was used to produce fully active enzyme containing one essential thiol group per molecule of protein, to establish that the chymopapain A molecule contains, in addition, one non-essential thiol group per molecule and to recalculate the literature value of epsilon 280 for the enzyme as 36 000 M-1 X cm -1. The Michaelis parameters for the hydrolysis of L-benzoylarginine p-nitroanilide and of benzyloxy-carbonyl-lysine nitrophenyl ester at 25 degrees C, and I 0.1 at several pH values catalysed by chymopapain A, papaya proteinase omega, papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) were determined. Towards these substrates chymopapain A has kcat./km values similar to those of actinidin and of papaya proteinase omega and significantly lower than those of papain or ficin. The environment of the catalytic site of chymopapain A is markedly different from those of other cysteine proteinases studied to date, as evidenced by the pH-dependence of the second-order rate constant (k) for the reaction of the catalytic-site thiol group with 2,2'-dipyridyl disulphide. The striking bell-shaped component that is a characteristic feature of the reactions of S-/ImH+ (thiolate/imidazolium) ion-pair components of many cysteine-proteinase catalytic sites with the 2,2'-dipyridyl disulphide univalent cation is not present in the pH-k profile for the chymopapain A reaction. The result is consistent with the presence of an additional positive charge in, or near, the catalytic site that repels the cationic form of the probe reagent. Resonance Raman spectra were collected at pH values 2.5, 6.0 and 8.0 for each of the following dithioacyl derivatives of chymopapain A: N-benzoylglycine-, N-(Beta-phenylpropionl)glycine- and N-methoxycarbonylphenylalanylglycine-. The main conclusion of the spectral study is that in each case the acyl group binds as a single population known as conformer B in which the glycinic N atom is in close contact with the thiol S atom of the catalytic-site cysteine residue, as is the case also for papain and other cysteine proteinases studied. Thus the abnormal catalytic-site environment of chymopapain A detected by the reactivity-probe studies, which may have consequences for the acylation step of the catalytic act, does not perturb the conformation of the bound acyl group at the acyl-enzyme-intermediate stage of catalysis.  相似文献   

13.
E Dufour 《Biochimie》1988,70(10):1335-1342
The comparison of the amino acid sequences of 5 cysteine proteinases: papain, actinidin, rat cathepsins B and H and chicken cathepsin L, demonstrates a striking homology among their sequences. The N-terminal region (residues 1-70 in papain) and C-terminal region (residues 118-212 in papain) display the highest sequence homologies, whereas the lowest sequence homologies are observed in the middle region (residues 71-117 in papain); a segment where most insertions/deletions are observed. The highest sequence homology is observed between rat cathepsin H and chicken cathepsin L. As shown by X-ray studies, papain and actinidin have a clearly defined double domain structure. Each domain contains a core of non-polar side chains, which are retained in cathepsins B, H and L, except for the non-polar residue 203 of the core which is replaced by glutamic acid in cathepsin B. The percentage and the location of alpha-helix and beta-sheets of cathepsins B, H and L, assessed using the methods of Garnier et al. (1978, J. Mol. Biol. 120, 97-120) and Chou and Fasman (1974, Biochemistry 13, 222-245), show that the main ordered structures in papain and actinidin are probably retained in cathepsins B, H and L. The differences observed occur essentially in the middle region, a place where sequences display the lowest homologies and which is far removed from the active site.  相似文献   

14.
Resonance Raman spectra are reported for a series of dithioacyl-enzymes involving actinidin (EC 3.4.22.14) and papaya peptidase II (the more basic monothiol cysteine proteinase of Carica papaya). The acyl groups are N-benzoylglycine and N-(beta-phenylpropionyl)glycine containing C = S or 13C = S at the ester function. Comparison of the data with those for the corresponding papain (EC 3.4.22.2) analogues [Storer, Lee & Carey (1983) Biochemistry 22, 4789-4796] allows us to define the conformation of the dithioacyl group in the catalytic site. In each case the dithioacyl group is bound in a single conformation known as conformer B, in which the glycinic nitrogen atom comes into close contact with the sulphur atom of the catalytic-site cysteine residue. For the N-(beta-phenylpropionyl)glycine dithioacyl-enzymes the torsional angles of the NH-CH2-C(= S) bonds assume values typical of an essentially relaxed non-strained state. However, for the N-benzoylglycine dithioacyl-enzymes there is evidence for a slightly perturbed conformer B, and the perturbation is most pronounced for N-benzoylglycine dithioacyl-actinidin. Values of k+2/Ks and k+3 for the reactions of papain, actinidin and papaya peptidase II with N-benzoylglycine and N-(beta-phenylpropionyl)glycine methyl thionoesters were obtained by a pre-steady-state kinetic study. Wide variation was found in k+2/Ks, but the values of k+3 are all similar. This general picture is supported by the results from a steady-state kinetic study of the reactions of the three enzymes with N-benzoyl-L-arginine-p-nitroanilide and with N-benzyloxycarbonyl-L-lysine p-nitrophenyl ester. The similarity of the values of k+3, together with the invariance of conformer B geometry at the P1 site, suggests that the chemistry of the deacylation process is highly conserved among these three cysteine proteinases.  相似文献   

15.
Cathepsin H is involved in intracellular protein degradation and is implicated in a variety of physiological processes such as proenzyme activation, enzyme inactivation, hormone maturation, tissue remodeling, and bone matrix resorption. A model of the tertiary structure of the human lysosomal cysteine protease cathepsin H was constructed. The protein structure was built from its amino acid sequence and its homology to papain, actinidin, and cathepsin L for which crystallographic co-ordinates are available. The model was generated using the COMPOSER module of SYBYL.The position and interaction behavior of the so called mini-chain, the octapeptide EPQNCSAT, to the active-site cleft of cathepsin H could be determined by docking studies. Refinement was achieved through interactive visual and algorithmic analysis and minimization with the TRIPOS force field. The model was found to correlate with observed empirical data regarding ligand specificity. The model defines possible steric, hydrophobic, and electrostatic interactions. We anticipate that the model will serve as a tool to understand substrate specificity and may be used for the development of new specific ligands.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s008940050117  相似文献   

16.
The complete primary structure of the proteinase omega isolated from the latex of the Carica papaya fruits is given. The polypeptide chain contains 216 amino-acid residues, the alignment of which was deduced from sequence analyses of the native enzyme, the tryptic, chymotryptic, peptic and thermolysinolytic peptides and facilitated due to the considerable degree of homology with papain and actinidin. The location of the three disulfide bridges could be established with the help of peptic and thermolysinolytic fragments. Proteinase omega shares 148 identical amino-acid residues (68.5%) with papain and 108 ones (50%) with actinidin, including the three disulfide bridges and the free cysteine residue required for activity, as well as most of the other amino-acid residues involved in the catalytic mechanism and two thirds of the glycine residues which are of structural significance. The homology with other cysteine proteinases of different origin is discussed.  相似文献   

17.
Refined structure of dienelactone hydrolase at 1.8 A   总被引:3,自引:0,他引:3  
The structure of dienelactone hydrolase (DLH) from Pseudomonus sp. B13, after stereochemically restrained least-squares refinement at 1.8 A resolution, is described. The final molecular model of DLH has a conventional R value of 0.150 and includes all but the carboxyl-terminal three residues that are crystallographically disordered. The positions of 279 water molecules are included in the final model. The root-mean-square deviation from ideal bond distances for the model is 0.014 A and the error in atomic co-ordinates is estimated to be 0.15 A. DLH is a monomeric enzyme containing 236 amino acid residues and is a member of the beta-ketoadipate pathway found in bacteria and fungi. DLH is an alpha/beta protein containing seven helices and eight strands of beta-pleated sheet. A single 4-turn 3(10)-helix is seen. The active-site Cys123 residues at the N-terminal end of an alpha-helix that is peculiar in its consisting entirely of hydrophobic residues (except for a C-terminal lysine). The beta-sheet is composed of parallel strands except for strand 2, which gives rise to a short antiparallel region at the N-terminal end of the central beta-sheet. The active-site cysteine residue is part of a triad of residues consisting of Cys123, His202 and Asp171, and is reminiscent of the serine/cysteine proteases. As in papain and actinidin, the active thiol is partially oxidized during X-ray data collection. The positions of both the reduced and the oxidized sulphur are described. The active site geometry suggests that a change in the conformation of the native thiol occurs upon diffusion of substrate into the active site cleft of DLH. This enables nucleophilic attack by the gamma-sulphur to occur on the cyclic ester substrate through a ring-opening reaction.  相似文献   

18.
Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes.  相似文献   

19.
Carter CE  Marriage H  Goodenough PW 《Biochemistry》2000,39(36):11005-11013
We report the cloning, overexpression, kinetic analysis, and modeling of the tertiary structure of an unusual plant cysteine proteinase. Ananain (EC 3.4.22.31), from Ananas comosus (pineapple) is distinguished from all other cysteine proteinases in the papain superfamily by having a unique combination of acidic amino acids. As well as lacking the acidic residue immediately preceding the active site histidine (position 158 in papain), it also lacks the extensive surface network of acidic residues that were postulated to compensate for the loss of charge at position 158 in mammalian cathepsins. Ananain has the fewest acidic residues, so far reported, of any plant cysteine proteinase, but two of the carboxyl residues (E50 and E35) postulated to have an enabling role in catalysis, the so-called "electrostatic switch", remain conserved. Comparisons of the kinetics of recombinant wild-type ananain with E50A and E35A mutants proves that these charged groups are not essential for catalysis. Hence this research does not confirm the presence of an electrostatic switch in this cysteine proteinase, and the role of acidic residues in the enhancement of catalytic competence in these enzymes is discussed in light of this new evidence.  相似文献   

20.
Procerain B, a novel cysteine protease (endopeptidase) isolated from Calotropis procera belongs to Asclepiadaceae family. Purification of the enzyme, biochemical characterization and potential applications are already published by our group. Here, we report cDNA cloning, complete amino acid sequencing and molecular modeling of procerain B. The derived amino acid sequence showed high sequence homology with other papain like plant cysteine proteases of peptidase C1A superfamily. The three dimensional structure of active procerain B was modeled by homology modeling using X-ray crystal structure of actinidin (PDB ID: 3P5U), a cysteine protease from the fruits of Actinidia arguta. The structural aspect of the enzyme is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号