首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To map the DNA-binding domain of polyomavirus large T antigen, we constructed a set of plasmids coding for unidirectional carboxy- or amino-terminal deletion mutations in the large T antigen. Analysis of origin-specific DNA binding by mutant proteins expressed in Cos-1 cells revealed that the C-terminal boundary of the DNA-binding domain is at or near Glu-398. Fusion proteins of large T antigen lacking the first 200 N-terminal amino acids bound specifically to polyomavirus origin DNA; however, deletions beyond this site resulted in unstable proteins which could not be tested for DNA binding. Testing of point mutants and internal deletions by others suggested that the N-terminal boundary of the DNA-binding domain lies between amino acids 282 and 286. Taken together, these results locate the DNA-binding domain of polyomavirus large T antigen to the 116-amino-acid region between residues 282 and 398.  相似文献   

2.
Simian virus 40 (SV40) provides a model system for the study of eukaryotic DNA replication, in which the viral protein, large T antigen (Tag), marshals human proteins to replicate the viral minichromosome. SV40 replication requires interaction of Tag with the host single-stranded DNA-binding protein, replication protein A (hRPA). The C-terminal domain of the hRPA32 subunit (RPA32C) facilitates initiation of replication, but whether it interacts with Tag is not known. Affinity chromatography and NMR revealed physical interaction between hRPA32C and the Tag origin DNA-binding domain, and a structural model of the complex was determined. Point mutations were then designed to reverse charges in the binding sites, resulting in substantially reduced binding affinity. Corresponding mutations introduced into intact hRPA impaired initiation of replication and primosome activity, implying that this interaction has a critical role in assembly and progression of the SV40 replisome.  相似文献   

3.
The biochemical activities of a series of transformation-competent, replication-defective large T-antigen point mutants were examined. The assays employed reflect partial reactions required for the in vitro replication of simian virus 40 (SV40) DNA. Mutants which failed to bind specifically to SV40 origin sequences bound efficiently to single-stranded DNA and exhibited nearly wild-type levels of helicase activity. A mutation at proline 522, however, markedly reduced ATPase, helicase, and origin-specific unwinding activities. This mutant bound specifically to the SV40 origin of replication, but under certain conditions it was defective in binding to both single-stranded DNA and the partial duplex helicase substrate. This suggests that additional determinants outside the amino-terminal-specific DNA-binding domain may be involved in nonspecific binding of T antigen to single-stranded DNA and demonstrates that origin-specific DNA binding can be separated from binding to single-stranded DNA. A mutant containing a lesion at residue 224 retained nearly wild-type levels of helicase activity and recognized SV40 origin sequences, yet it failed to function in an origin-specific unwinding assay. This provides evidence that origin recognition and helicase activities are not sufficient for unwinding to occur. The distribution of mutant phenotypes reflects the complex nature of the initiation reaction and the multiplicity of functions provided by large T antigen.  相似文献   

4.
We constructed several deletion mutants of Escherichia coli single-stranded DNA binding protein (EcoSSB) lacking different parts of the C-terminal region. This region of EcoSSB is composed of two parts: a glycine and proline-rich sequence of approximately 60 amino acids followed by an acidic region of the last 10 amino acids which is highly conserved among the bacterial SSB proteins. The single-stranded DNA binding protein of human mitochondria (HsmtSSB) lacks a region homologous to the C-terminal third of EcoSSB. Therefore, we also investigated a chimeric protein consisting of the complete sequence of the human mitochondrial single-stranded DNA binding protein (HsmtSSB) and the C-terminal third of EcoSSB. Fluorescence titrations and DNA-melting curves showed that the C-terminal third of EcoSSB is not essential for DNA-binding in vitro. The affinity for single-stranded DNA and RNA is even increased by the removal of the last 10 amino acids. Consequently, the nucleic acid binding affinity of HsmtSSB is reduced by the addition of the C-terminus of EcoSSB. All mutant proteins lacking the last 10 amino acids are unable to substitute wild-type EcoSSB in vivo. Thus, while the nucleic acid binding properties do not depend on an intact C-terminus, this region is essential for in vivo function. Although the DNA binding properties of HsmtSSB and EcoSSB are quite similar, HsmtSSB does not function in E.coli. This failure cannot be overcome by fusing the C-terminal third of EcoSSB to HsmtSSB. Thus differences in the N-terminal parts of both proteins must be responsible for this incompatibility. None of the mutants was defective in tetramerization. However, mixed tetramers could only be formed by proteins containing the same N-terminal part. This reflects structural differences between the N-terminal parts of HsmtSSB and EcoSSB. These results indicate that the region of the last 10 amino acids, which is highly conserved among bacterial SSB proteins, is involved in essential protein-protein interactions in the E.coli cell.  相似文献   

5.
M Strauss  P Argani  I J Mohr    Y Gluzman 《Journal of virology》1987,61(10):3326-3330
The origin-specific DNA-binding domain of simian virus 40 large T antigen was analyzed, and its C-terminal boundary was found to be at or before amino acid 259. This does not include the zinc finger structural motif located at amino acids 302 to 320 (J. M. Berg, Science 232:485-486, 1986). Interestingly, N-terminal fragments of 266 and 272 amino acids and larger displayed dramatically reduced origin-binding activity. In addition, the specific DNA-binding properties of truncated proteins purified from both bacterial and mammalian sources were compared. Truncated T antigens from mammalian cells bound specific DNA fragments more efficiently than did their bacterial counterparts. These results implicate posttranslational modification with a role in regulating the DNA-binding activity of large T antigen.  相似文献   

6.
Herpes simplex virus type-1 origin-binding protein (UL9 protein) initiates viral replication by unwinding the origins. It possesses sequence-specific DNA-binding activity, single-stranded DNA-binding activity, DNA helicase activity, and ATPase activity that is strongly stimulated by single-stranded DNA. We have examined the role of cysteines in its action as a DNA helicase. The DNA helicase and DNA-dependent ATPase activities of UL9 protein were stimulated by reducing agent and specifically inactivated by the sulfhydryl-specific reagent N-ethylmaleimide. To identify the cysteine responsible for this phenomenon, a conserved cysteine in the vicinity of the ATP-binding site (cysteine 111) was mutagenized to alanine. UL9C111A protein exhibits defects in its DNA helicase and DNA-dependent ATPase activities and was unable to support origin-specific DNA replication in vivo. A kinetic analysis indicates that these defects are due to the inability of single-stranded DNA to induce high affinity ATP binding in UL9C111A protein. The DNA-dependent ATPase activity of UL9C111A protein is resistant to N-ethylmaleimide, while its DNA helicase activity remains sensitive. Accordingly, sensitivity of UL9 protein to N-ethylmaleimide is due to at least two cysteines. Cysteine 111 is involved in coupling single-stranded DNA binding to ATP-binding and subsequent hydrolysis, while a second cysteine is involved in coupling ATP hydrolysis to DNA unwinding.  相似文献   

7.
The Escherichia coli SeqA protein, a negative regulator of chromosomal DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated G-mA-T-C sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the functional domains responsible for the DNA-binding and self-association activities, we performed a deletion analysis of the SeqA protein and found that the N-terminal (amino acid residues 1-59) and the C-terminal (amino acid residues 71-181) regions form structurally distinct domains. The N-terminal domain, which is not involved in DNA binding, has the self-association activity. In contrast, the C-terminal domain, which lacks the self-association activity, specifically binds to the hemimethylated G-mA-T-C sequence. Therefore, two essential SeqA activities, self-association and DNA-binding, are independently performed by the structurally distinct N-terminal and C-terminal domains, respectively.  相似文献   

8.
9.
10.
The E1 helicase of papillomavirus is required, in addition to host cell DNA replication factors, during the initiation and elongation phases of viral episome replication. During initiation, the viral E2 protein promotes the assembly of enzymatically active multimeric E1 complexes at the viral origin of DNA replication. In this study we used the two-hybrid system and chemical cross-linking to demonstrate that human papillomavirus type 11 (HPV11) E1 can self-associate in yeast and form hexamers in vitro in a reaction stimulated by single-stranded DNA. Self-association in yeast was most readily detected using constructs spanning the E1 C-terminal domain (amino acids 353 to 649) and was dependent on a minimal E1-E1 interaction region located between amino acids 353 and 431. The E1 C-terminal domain was also able to oligomerize in vitro but, in contrast to wild-type E1, did so efficiently in the absence of single-stranded DNA. Sequences located between amino acids 191 and 353 were necessary for single-stranded DNA to modulate oligomerization of E1 and were also required, together with the rest of the C terminus, for binding of E1 to the origin. Two regions within the C-terminal domain were identified as important for oligomerization: the ATP-binding domain and region A, which is located within the minimal E1-E1 interaction domain and is one of four regions of E1 that is highly conserved with the large T antigens of simian virus 40 and polyomavirus. Amino acid substitutions of highly conserved residues within the ATP-binding domain and region A were identified that reduced the ability of E1 to oligomerize and bind to the origin in vitro and to support transient DNA replication in vivo. These results support the notion that oligomerization of E1 occurs primarily through the C-terminal domain of the protein and is allosterically regulated by DNA and ATP. The bipartite organization of the E1 C-terminal domain is reminiscent of that found in other hexameric proteins and suggests that these proteins may oligomerize by a similar mechanism.  相似文献   

11.
The human immunodeficiency virus (HIV) integrase (IN) protein mediates an essential step in the retroviral lifecycle, the integration of viral DNA into human DNA. A DNA-binding domain of HIV IN has previously been identified in the C-terminal part of the protein. We tested truncated proteins of the C-terminal region of HIV-1 IN for DNA binding activity in two different assays: UV-crosslinking and southwestern blot analysis. We found that a polypeptide fragment of 50 amino acids (IN220-270) is sufficient for DNA binding. In contrast to full-length IN protein, this domain is soluble under low salt conditions. DNA binding of IN220-270 to both viral DNA and non-specific DNA occurs in an ion-independent fashion. Point mutations were introduced in 10 different amino acid residues of the DNA-binding domain of HIV-2 IN. Mutation of basic amino acid K264 results in strong reduction of DNA binding and of integrase activity.  相似文献   

12.
Simian virus 40 large tumor antigen (Tag) is a multi-functional viral protein that binds specifically to SV40 origin DNA, serves as the replicative DNA helicase, and orchestrates the assembly and operation of the viral replisome. Tag associated with Mg-ATP forms hexamers and, in the presence of SV40 origin DNA, double hexamers. Limited tryptic digestion of monomeric Tag revealed three major stable structural domains. The N-terminal domain spans amino acids 1-130, the central domain comprises amino acids 131-476, and the C-terminal domain extends from amino acid 513 to amino acid 698. Co-immunoprecipitation of digestion products of monomeric Tag suggests that the N-terminal domain associates stably with sequences located in the central region of the same Tag molecule. Hexamer formation protected the tryptic cleavage sites in the exposed region between the central and C-terminal domains. Upon hexamerization, this exposed region also became less accessible to a monoclonal antibody whose epitope maps in that region. The tryptic digestion products of the soluble hexamer and the DNA-bound double hexamer were indistinguishable. A low-resolution model of the intramolecular and intermolecular interactions among Tag domains in the double hexamer is proposed.  相似文献   

13.
The role for zinc in replication protein A   总被引:6,自引:0,他引:6  
Heterotrimeric human single-stranded DNA (ssDNA)-binding protein, replication protein A (RPA), is a central player in DNA replication, recombination, and repair. The C terminus of the largest subunit, RPA70, contains a putative zinc-binding motif and is implicated in complex formation with two smaller subunits, RPA14 and RPA32. The C-terminal domain of RPA70 (RPA70-CTD) was characterized using proteolysis and x-ray fluorescence emission spectroscopy. The proteolytic core of this domain comprised amino acids 432-616. X-ray fluorescence spectra revealed that RPA70-CTD possesses a coordinated Zn(II). The trimeric complex of RPA70-CTD, the ssDNA-binding domain of RPA32 (amino acids 43-171), and RPA14 had strong DNA binding activity. When properly coordinated with zinc, the trimer's affinity to ssDNA was only 3-10-fold less than that of the ssDNA-binding domain in the middle of RPA70. However, the DNA-binding activity of the trimer was dramatically reduced in the presence of chelating agents. Our data indicate that (i) Zn(II) is essential to stabilize the tertiary structure of RPA70-CTD; (ii) RPA70-CTD possesses DNA-binding activity, which is modulated by Zn(II); and (iii) ssDNA binding by the trimer is a synergistic effect generated by the RPA70-CTD and RPA32.  相似文献   

14.
15.
Cdc13 is an essential protein from Saccharomyces cerevisiae that caps telomeres by protecting the C-rich telomeric DNA strand from degradation and facilitates telomeric DNA replication by telomerase. In vitro, Cdc13 binds TG-rich single-stranded telomeric DNA with high affinity and specificity. A previously identified domain of Cdc13 encompassing amino acids 451–694 (the 451–694 DBD) retains the single-stranded DNA-binding properties of the full-length protein; however, this domain contains a large unfolded region identified in heteronuclear NMR experiments. Trypsin digestion and MALDI mass spectrometry were used to identify the minimal DNA-binding domain (the 497–694 DBD) necessary and sufficient for full DNA-binding activity. This domain was completely folded, and the N-terminal unfolded region removed was shown to be dispensable for function. Using affinity photocrosslinking to site-specifically modified telomeric single-stranded DNA, the 497–694 DBD was shown to contact the entire 11mer required for high-affinity binding. Intriguingly, both domains bound single-stranded telomeric DNA with much greater affinity than the full-length protein. The full-length protein exhibited the same rate of dissociation as both domains, however, indicating that the full-length protein contains a region that inhibits association with single-stranded telomeric DNA.  相似文献   

16.
The integrase (IN) protein of human immunodeficiency virus type 1 (HIV-1) catalyzes site-specific cleavage of 2 bases from the viral long terminal repeat (LTR) sequence yet it binds DNA with little DNA sequence specificity. We have previously demonstrated that the C-terminal half of IN (amino acids 154-288) possesses a DNA binding domain. In order to further characterize this region, a series of clones expressing truncated forms of IN as N-terminal fusion proteins in E.coli were constructed and analyzed by Southwestern blotting. Proteins containing amino acids 1-263, 1-248 and 170-288 retained the ability to bind DNA, whereas a protein containing amino acids 1-180 showed no detectable DNA binding. This defines a DNA binding domain contained within amino acids 180-248. This region contains an arrangement of 9 lysine and arginine residues each separated by 2-4 amino acids (KxxxKxxxKxxxxRxxxRxxRxxxxKxxxKxxxK), spanning amino acids 211-244, which is conserved in all HIV-1 isolates. A clone expressing full-length IN with a C-terminal fusion of 16 amino acids was able to bind DNA comparably to a cloned protein with a free C-terminus, and an IN-specific monoclonal antibody which recognizes an epitope contained within amino acids 264-279 was unable to block DNA binding, supporting the evidence that a region necessary for binding lies upstream of amino acid 264.  相似文献   

17.
Bloom syndrome protein forms an oligomeric ring structure and belongs to a group of DNA helicases showing extensive homology to the Escherichia coli DNA helicase RecQ, a suppressor of illegitimate recombination. After over-production in E.coli, we have purified the RecQ core of BLM consisting of the DEAH, RecQ-Ct and HRDC domains (amino acid residues 642-1290). The BLM(642-1290) fragment could function as a DNA-stimulated ATPase and as a DNA helicase, displaying the same substrate specificity as the full-size protein. Gel-filtration experiments revealed that BLM(642-1290) exists as a monomer both in solution and in its single-stranded DNA-bound form, even in the presence of Mg(2+) and ATPgammaS. Rates of ATP hydrolysis and DNA unwinding by BLM(642-1290) showed a hyperbolic dependence on ATP concentration, excluding a co-operative interaction between ATP-binding sites. Using a lambda Spi(-) assay, we have found that the BLM(642-1290) fragment is able to partially substitute for the RecQ helicase in suppressing illegitimate recombination in E.coli. A deletion of 182 C-terminal amino acid residues of BLM(642-1290), including the HRDC domain, resulted in helicase and single-stranded DNA-binding defects, whereas kinetic parameters for ATP hydrolysis of this mutant were close to the BLM(642-1290) values. This confirms the prediction that the HRDC domain serves as an auxiliary DNA-binding domain. Mutations at several conserved residues within the RecQ-Ct domain of BLM reduced ATPase and helicase activities severely as well as single-stranded DNA-binding of the enzyme. Together, these data define a minimal helicase domain of BLM and demonstrate its ability to act as a suppressor of illegitimate recombination.  相似文献   

18.
The DNA-binding domain of the Escherichia coli DnaA protein is represented by the 94 C-terminal amino acids (domain 4, aa 374-467). The isolated DNA-binding domain acts as a functional repressor in vivo, as monitored with a mioC:lacZ translational fusion integrated into the chromosome of the indicator strain. In order to identify residues required for specific DNA binding, site-directed and random PCR mutagenesis were performed, using the mioC:lacZ construct for selection. Mutations defective in DNA binding were found all over the DNA-binding domain with some clustering in the basic loop region, within presumptive helix B and in a highly conserved region at the N-terminus of presumptive helix C. Surface plasmon resonance (SPR) analysis revealed different binding classes of mutant proteins. No or severely reduced binding activity was demonstrated for amino acid substitutions at positions R399, R407, Q408, H434, T435, T436 and A440. Altered binding specificity was found for mutations in a 12 residue region close to the N-terminus of helix C. The defects of the classical temperature sensitive mutants dnaA204, dnaA205 and dnaA211 result from instability of the proteins at higher temperatures. dnaX suppressors dnaA71 and dnaA721 map to the region close to helix C and bind DNA non-specifically.  相似文献   

19.
A bipartite DNA-binding domain in yeast Reb1p.   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

20.
Replication protein A (RPA) is the major single-stranded DNA-binding protein in eukaryotes. RPA is composed of three subunits of 70, 32, and 14 kDa. The N-terminal domain of the 70-kDa subunit (RPA70) has weak DNA binding activity, interacts with proteins, and is involved in cellular DNA damage response. To define the mechanism by which this domain regulates RPA function, we analyzed the function of RPA forms containing a deletion of the N terminus of RPA70 and mutations in the phosphorylation domain of RPA (N-terminal 40 amino acids of the 32-kDa subunit). Although each individual mutation has only modest effects on RPA activity, a form combining both phosphorylation mimetic mutations and a deletion of the N-terminal domain of RPA70 was found to have dramatically altered activity. This combined mutant was defective in binding to short single-stranded DNA oligonucleotides and had altered interactions with proteins that bind to the DNA-binding core of RPA70. These results indicate that in the absence of the N-terminal domain of RPA70, a negatively charged phosphorylation domain disrupts the activity of the core DNA-binding domain of RPA. We conclude that the N-terminal domain of RPA70 functions by interacting with the phosphorylation domain of the 32-kDa subunit and blocking undesirable interactions with the core DNA-binding domain of RPA. These studies indicate that RPA conformation is important for regulating RPA-DNA and RPA-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号