首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alanine racemase has been purified to homogeneity from the hepatopancreas of the black tiger prawn, Panaeus mondon. The enzyme depends on pyridoxal 5′-phosphate and consists of two subunits with an identical molecular weight of 41,000. Vmax and Km values for -alanine are 460 μmol/min/mg and 50 mM, and those for -alanine are 94 μmol/min/mg and 24 mM, respectively. The enzyme is highly specific toward alanine. Among other amino acids examined, only serine served as a substrate: -serine was racemized at a rate of approximately 0.5% of that of -alanine. The prawn enzyme is immunochemically distinguishable from the enzymes of Bacillus stearothermophilus and Schizosaccharomyces pombe, which resemble each other. The prawn enzyme is activated and stabilized by the presence of monovalent anions including chloride. This is consistent with the previous hypothesis (e.g. E. Fujita, E. Okuma, H. Abe, Comp. Biochem. Physiol. 116A (1997) 83–87) that -alanine serves as an osmoregulator in marine and euryhaline animals.  相似文献   

2.
The substrate specificity of the recently discovered enzyme, opine dehydrogenase (ODH) fromArthrobacter sp. strain 1C for amino donors in the reaction that forms secondary amines using pyruvate as a fixed amino acceptor is examined. The enzyme was active toward short-chain aliphatic (S)-amino acids and those substituted with acyloxy, phosphonooxy, and halogen groups. The enzyme was named N-[1-(R)-(car☐yl)ethyl]-(S)-norvaline: NAD+ oxidoreductase (L-norvaline forming). Other substrates for the enzyme were 3-aminobutyric acid and (S)-phenylalaninol. Optically pure opine-type secondary amine car☐ylic acids were synthesized from amino acids and their analogs such as (S)-methionine, (S)-isoleucine, (S)-leucine, (S)-valine, (S)-phenylalanine, (S)-alanine, (S)-threonine, (S)-serine, and (S)-phenylalaninol, and -keto acids such as glyoxylate, pyruvate, and 2-oxobutyrate using the enzyme, with regeneration of NADH by formate dehydrogenase (FDH) fromMoraxella sp. C-1. The absolute configuration of the nascent asymmetric center of the opines was of the (R) stereochemistry with > 99.9% e.e. One-pot synthesis of N-[1-(R)-(car☐yl)ethyl]-(S)-phenylalanine from phenylpyruvate and pyruvate by using ODH, FDH, and phenylalanine dehydrogenase (PheDH) fromBacillus sphaericus, is also described.  相似文献   

3.
Laccases isolated from Rhus vernicifera Stokes (tree) and Pycnoporus coccineus (fungus) catalyzed the oxidation of isoeugenol (1) and coniferyl alcohol (5) in acetone–water (1:1, v/v). These oxidations follow a first order rate law. In general, the rates of Pycnoporus laccase-catalyzed oxidation of 1 and 5 are approximately three and seven times faster than the corresponding rates of Rhus laccase-catalyzed oxidation, respectively. Thus, synthesis for 2-(4-hydroxyphenyl)coumaran type compounds, such as dehydrodiconiferyl alcohol, can be accomplished by Rhus laccase-catalyzed dehydrogenative polymerization of the corresponding 1-(4-hydroxyphenyl)–1-propene derivatives. The reaction proceeds under very mild reaction conditions. The resulting reaction mixtures are chromatographed on a silica gel column to isolate the products in approximately 30–40% yield.  相似文献   

4.
β-alanine is an important biomolecule used in nutraceuticals, pharmaceuticals, and chemical synthesis. The relatively eco-friendly bioproduction of β-alanine has recently attracted more interest than petroleum-based chemical synthesis. In this work, we developed two types of in vivo high-throughput screening platforms, wherein one was utilized to identify a novel target ribonuclease E (encoded by rne) as well as a redox-cofactor balancing module that can enhance de novo β-alanine biosynthesis from glucose, and the other was employed for screening fermentation conditions. When combining these approaches with rational upstream and downstream module engineering, an engineered E. coli producer was developed that exhibited 3.4- and 6.6-fold improvement in β-alanine yield (0.85 mol β-alanine/mole glucose) and specific β-alanine production (0.74 g/L/OD600), respectively, compared to the parental strain in a minimal medium. Across all of the strains constructed, the best yielding strain exhibited 1.08 mol β-alanine/mole glucose (equivalent to 81.2% of theoretic yield). The final engineered strain produced 6.98 g/L β-alanine in a batch-mode bioreactor and 34.8 g/L through a whole-cell catalysis. This approach demonstrates the utility of biosensor-enabled high-throughput screening for the production of β-alanine.  相似文献   

5.
β -Alanine betaine is an osmoprotective compound accumulated by most members of the plant family Plumbaginaceae. Leaf and root tissues of Limonium latifolium known to accumulate β -alanine betaine readily convert supplied β -alanine to β -alanine betaine. To identify the intermediates and the enzymes involved in β -alanine betaine synthesis, radiotracer experiments using [ 14 C] formate were employed. These studies demonstrate that β -alanine betaine is synthesized from β -alanine via N -methyl and N,N- dimethyl β -alanines. A rapid and sensitive radiometric assay was developed to measure N -methyltransferase (NMT) activities by using [methyl-14C] or [methyl-3H] S -adenosyl- l -methionine (AdoMet) as the methyl donor. Leaf extracts from β -alanine betaine accumulators – Armeria maritima , L. latifolium and L. ramosissimum – had detectable NMT activities while none were found in L. perezii , a species that does not accumulate β -alanine betaine. The NMT activities were further characterized from the leaves of L. latifolium . The activities had a pH optimum of 8.0, were soluble and inhibited by S -adenosyl- l -homocysteine. Extractable activities were similar from plants grown under control and salinity stress conditions. Radiolabeling with [ 14 C] l -aspartic acid indicated that, unlike in bacteria, decarboxylation of l -aspartic acid is not the source of β -alanine in the Plumbaginaceae.  相似文献   

6.
Summary During high salinity stress, -alanine accumulates to high levels in the sea anemone,Bunodosoma cavernata. Following a salinity increase from 26 to 40 -alanine increased 28-fold from 1.5 to 41.9 moles/g dry weight. Both whole animal studies and experiments with cell free homogenates indicate that under high salinity conditions an increase in the rate of -alanine synthesis from aspartic acid as well as a decrease in the rate of -alanine oxidation are responsible for the observed accumulation of -alanine. The rate of aspartic acid decarboxylation to -alanine is about 3 times greater in anemones acclimated to 40 than for those in normal salinity water (26). -alanine oxidation to CO2 and acetyl-CoA proceeds 2.5 to 3 times slower in high salinity adaptedB. cavernata than in those acclimated to normal salinity. There is always a rapid degradation of uracil to -alanine, but this does not change with salinity.Abbreviations CASF cold acid soluble fraction - FAA free amino acids - MES 2(N-morpholino) ethane sulfonic acid - NPS ninhydrin positive substances - PCA perchloric acid - TCA trichloroacetic acid  相似文献   

7.
β-Alanine is an important β-amino acid with a growing demand in a wide range of applications in chemical and food industries. However, current industrial production of β-alanine relies on chemical synthesis, which usually involves harmful raw materials and harsh production conditions. Thus, there has been increasing demand for more sustainable, yet efficient production process of β-alanine. In this study, we constructed Corynebacterium glutamicum strains for the highly efficient production of β-alanine through systems metabolic engineering. First, aspartate 1-decarboxylases (ADCs) from seven different bacteria were screened, and the Bacillus subtilis ADC showing the most efficient β-alanine biosynthesis was used to construct a β-alanine-producing base strain. Next, genome-scale metabolic simulations were conducted to optimize multiple metabolic pathways in the base strain, including phosphotransferase system (PTS)-independent glucose uptake system and the biosynthesis of key precursors, including oxaloacetate and L-aspartate. TCA cycle was further engineered for the streamlined supply of key precursors. Finally, a putative β-alanine exporter was newly identified, and its overexpression further improved the β-alanine production. Fed-batch fermentation of the final engineered strain BAL10 (pBA2_tr18) produced 166.6 g/L of β-alanine with the yield and productivity of 0.28 g/g glucose and 1.74 g/L/h, respectively. To our knowledge, this production performance corresponds to the highest titer, yield and productivity reported to date for the microbial fermentation.  相似文献   

8.
A one-pot method was developed for the preparation of a series of β-alanine standards of moderate size (2 to ≥12 residues) for studies concerning the prebiotic origins of peptides. The one-pot synthesis involved two sequential reactions: (1) dry-down self-condensation of β-alanine methyl ester, yielding β-alanine peptide methyl ester oligomers, and (2) subsequent hydrolysis of β-alanine peptide methyl ester oligomers, producing a series of β-alanine peptide standards. These standards were then spiked into a model prebiotic product mixture to confirm by HPLC the formation of β-alanine peptides under plausible reaction conditions. The simplicity of this approach suggests it can be used to prepare a variety of β-peptide standards for investigating differences between α- and β-peptides in the context of prebiotic chemistry.  相似文献   

9.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   

10.
The optimization of a continuous enzymatic reaction yielding (R)-(−)-phenylacetylcarbinol ((R)-PAC), a key intermediate of the (1R,2S)-(−)-ephedrine synthesis, is presented. We compare the suitability of different mutants of the pyruvate decarboxylase (PDC) from Zymomonas mobilis with respect to their application in biotransformation using pyruvate or acetaldehyde and benzaldehyde as substrates, respectively. Starting from 90 mM pyruvate and 30 mM benzaldehyde, (R)-PAC was obtained with a space time yield of 27.4 g/(L·day) using purified PDCW392I in an enzyme-membrane reactor. Due to the high stability of the mutant enzymes PDCW392I and PDCW392M towards acetaldehyde, a continuous procedure using acetaldehyde instead of pyruvate was developed. The kinetic results of the enzymatic synthesis starting from acetaldehyde and benzaldehyde demonstrate that the carboligation to (R)-PAC is most efficiently performed using a continuous reaction system and feeding both aldehydes in equimolar concentration. Starting from an inlet concentration of 50 mM of both aldehydes, (R)-PAC was obtained with a space-time yield of 81 g/(L·day) using the mutant enzyme PDCW392M. The new reaction strategy allows the enzymatic synthesis of (R)-PAC from cheap substrates free of unwanted by-products with potent mutants of PDC from Z. mobilis in an aqueous reaction system.  相似文献   

11.
Vacuolar membrane-derived vesicles isolated from Vigna radiata catalyze oxygen exchange between medium phosphate and water. On the basis of the inhibitor sensitivity and cation requirements of the exchange activity, it is almost exclusively attributable to the vacuolar H+-pyrophosphatase (V-PPase). The invariance of the partition coefficient and the results of kinetic modeling indicate that exchange proceeds via a single reaction pathway and results from the reversal of enzyme-bound pyrophosphate synthesis. Comparison of the exchange reactions catalyzed by V-PPase and soluble PPases suggests that the two classes of enzyme mediate Pi---HOH exchange by the same mechanism and that the intrinsic reversibility of the V-PPase is no greater than that of soluble PPases.  相似文献   

12.
Lee SY  Kim YC 《Amino acids》2007,33(3):543-546
Summary. Mice were supplemented with β-alanine (3%) in drinking water for one week. β-Alanine intake reduced hepatic taurine levels, but elevated cysteine levels significantly. Hepatotoxicity of CCl4 in mice fed with β-alanine was decreased as determined by changes in serum enzyme activities. Hepatic glutathione and taurine concentrations after CCl4 challenge were increased markedly by β-alanine intake. The enhanced availability of cysteine for synthesis of glutathione and/or taurine appears to account for the hepatoprotective effects of β-alanine against CCl4-induced liver injury.  相似文献   

13.
J.B. Hoek  J. Rydstrm  L. Ernster 《BBA》1973,305(3):669-674
A recent claim in the literature (Moyle, J. and Mitchell, P. (1973) Biochem. J. 132, 571–585) that the NAD-dependent isocitrate oxidation observed in extracts of ratliver mitochondria proceeds entirely via the NADP-linked isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase, and that rat-liver mitochondria contain no NAD-linked isocitrate dehydrogenase, has been examined by using palmityl-CoA as a selective inhibitor of transhydrogenase and ADP as a selective activator of the NAD-linked isocitrate dehydrogenase. The results unambiguously demonstrate that the NAD-dependent oxidation of isocitrate observed under the conditions employed by Moyle and Mitchell proceeds predominantly via the NAD-linked isocitrate dehydrogenase. It is also shown that, by an unfortunate choice of assay conditions, these authors have considerably overestimated the rate of the transhydrogenase reaction.  相似文献   

14.
Objective: 1,4-Benzodioxane is an important chiral intermediate for antihypertensive (Proroxan and Doxazosin), antidepressant (MCK-242) and other drugs, and it displays a broad spectrum of applications in the pharmaceutical field. Currently, in spite of high-yield advantage of chemical synthesis, there are some problems of environmental pollution and low production safety. Using lipase to catalyze synthesis of 1,4-benzodioxane provides a new pathway of green synthesis of 1,4-benzodioxane. However, natural enzymes face the dilemma of poor enantioselectivity. Therefore, molecular evolution was performed on Candida antarctica lipase B, and a technical route for the catalytic synthesis of 1,4-benzodioxane was established. Methods: Firstly, the key amino acid residues involved in substrate binding and conversion in the active center of Candida antarctica lipase B were analyzed, and saturation mutagenesis libraries on the interaction sites were constructed. Improved mutants with high efficiency and high enantioselectivity were then obtained using HPLC detection. Furthermore, catalytic synthesis conditions of mutant D223N/A225K were systematically optimized. Results: The results indicated that the mutants mainly derived from the pairwise site D223/A225 (such as D223N/A225K and D223G/A225W) were biased towards the synthesis of (S)-isoforms, while most of the mutants derived from the pairwise site E188/I189 (such as E188D/I189M) showed a bias for the synthesis of (R)-isoforms. Compared with WT, the ees value of the best mutant D223N/A225K to synthesize (S)-1,4-benzodioxane was increased from 11.9% to 29.3%. After systematic optimization of the reaction conditions, an ees value of (93.9±0.16)% and a conversion rate of (47.5±2.33)% were achieved using mutant D223N/A225K to catalyze kinetic resolution of methyl (R,S)-2,3-dihydro-1,4-benzodioxin-2-carboxylate in n-butanol/phosphate buffered saline (20∶80, V/V) biphasic solvent at 37℃ for 50 min. Conclusion: An efficient kinetic resolution of methyl (R,S)-2,3-dihydro-1,4-benzodioxin-2-carboxylate was successfully achieved by molecular evolution and optimization of conditions, which provides a new example for the creation of new enzymes by protein engineering technology, and also provides a theoretical and technical foundation for the efficient synthesis of (S)-1,4-benzodioxane molecules by enzymatic methods.  相似文献   

15.
The granular structure and gelatinisation properties of starches from a range of pea seed mutants were studied. Genes which affect the supply of substrate during starch synthesis (rb, rug3, rug4) affected the total crystallinity and possibly increased the content of A polymorphs in the starch. Conversely, genes directly affecting the synthesis of starch polymers (r, rug5, lam) increased the content of B polymorphs, but had a minimal effect on total crystallinity. During gelatinisation, starches from the rb, rug3, rug4 and lam mutants had narrow endothermic peaks which were similar to starch from the wild-type, although all the starches had different peak temperatures and enthalpy changes. Starches from r and rug5 mutants were very different to all other starches, having a very wide transition during gelatinisation. In addition, the amylopectin in starch from these mutants had altered chain lengths for those parts of the polymer which form the ordered structures in the granule.  相似文献   

16.
Microbial isolates from biofilters and petroleum-polluted bioremediation sites were screened for the presence of enantioselective epoxide hydrolases active towards tert-butyl glycidyl ether, benzyl glycidyl ether, and allyl glycidyl ether. Out of 270 isolated strains, which comprised bacteria, yeasts, and filamentous fungi, four were selected based on the enantioselectivities of their epoxide hydrolases determined in biotransformation reactions. The enzyme of Aspergillus niger M200 preferentially hydrolyses (S)-tert-butyl glycidyl ether to (S)-3-tert-butoxy-1,2-propanediol with a relatively high enantioselectivity (the enantiomeric ratio E is about 30 at a reaction temperature of 28 °C). Epoxide hydrolases of Rhodotorula mucilaginosa M002 and Rhodococcus fascians M022 hydrolyse benzyl glycidyl ether with relatively low enantioselectivities, the former reacting predominantly with the (S)-enantiomer, the latter preferring the (R)-enantiomer. Enzymatic hydrolysis of allyl glycidyl ether by Cryptococcus laurentii M001 proceeds with low enantioselectivity (E = 3). (R)-tert-Butyl glycidyl ether with an enantiomeric excess (ee) of over 99%, and (S)-3-tert-butoxy-1,2-propanediol with an ee-value of 86% have been prepared on a gram-scale using whole cells of A. niger M200. An enantiomeric ratio of approximately 100 has been determined under optimised biotransformation conditions with the partially purified epoxide hydrolase from A. niger M200. The regioselectivity of this enzyme was determined to be total for both (S)-tert-butyl glycidyl ether and (R)-tert-butyl glycidyl ether.  相似文献   

17.
N-Lauroyl-β-amino propionitrile is an intermediate for synthesis of sodium N-lauroyl-β-alanine, an antimicrobial surfactant. We provide a novel process for enzymatic synthesis of N-lauroyl-β-amino propionitrile, using a cascade connection of an enzyme packed bed reactor (EPBR) with a crystallization separator for on-line separation. The substrate solution was fed to the reactor inlet. High-purity crystal product was obtained from the separator outlet with a yield of 91.7% under the optimum conditions. The immobilized lipase can be utilized repeatedly. The solvent and unreacted substrates were recovered and reused on-line.  相似文献   

18.
The use of (R)-specific enoyl-coenzyme A (CoA) hydratase (PhaJ) provides a powerful tool for polyhydroxyalkanoate (PHA) synthesis from fatty acids or plant oils in recombinant bacteria. PhaJ provides monomer units for PHA synthesis from the fatty acid ß-oxidation cycle. Previously, two phaJ genes (phaJ1Pa and phaJ2Pa) were identified in Pseudomonas aeruginosa. This report identifies two new phaJ genes (phaJ3Pa and phaJ4Pa) in P. aeruginosa through a genomic database search. The abilities of the four PhaJPa proteins and the (R)-3-hydroxyacyl-acyl carrier protein [(R)-3HA-ACP] dehydrases, FabAPa and FabZPa, to supply monomers from enoyl-CoA substrates for PHA synthesis were determined. The presence of either PhaJ1Pa or PhaJ4Pa in recombinant Escherichia coli led to the high levels of PHA accumulation (as high as 36–41 wt.% in dry cells) consisting of mainly short- (C4–C6) and medium-chain-length (C6–C10) 3HA units, respectively. Furthermore, detailed characterizations of PhaJ1Pa and PhaJ4Pa were performed using purified samples. Kinetic analysis revealed that only PhaJ4Pa exhibits almost constant maximum reaction rates (Vmax) irrespective of the chain length of the substrates. The assay for stereospecific hydration revealed that, unlike PhaJ1Pa, PhaJ4Pa has relatively low (R)-specificity. These hydratases may be very useful as monomer-suppliers for the synthesis of designed PHAs in recombinant bacteria.  相似文献   

19.
纤维二糖可有效诱导丝状真菌产纤维素酶,前期研究表明匍枝根霉Rhizopus stolonifer TP-02具有纤维二糖合成酶(CBS),可以尿苷二磷酸葡萄糖(UDPG)为糖基供体合成纤维二糖,从而开启纤维素酶的自诱导合成途径。为研究R. stolonifer中纤维二糖的胞内合成途径,通过重叠PCR在GDP-葡糖焦磷酸化酶基因ggp中引入硫胺吡啶抗性基因ptrA,分别转化原菌TP-02和△ugp突变株,构建△ggp和△ugp/ggp突变株。利用液质联用(LC-MS)检测突变株的胞内糖组分,发现ggp的缺失对胞内纤维二糖合成的影响较弱,但同时缺失ugp则将直接导致二糖合成受阻。RT-qPCR结果显示△ggp突变株中纤维素酶基因转录水平较原株TP-02下调20%左右,而△ugp/ggp突变株中被测基因的转录水平则出现了高达80%左右的下调。同时对突变株纤维素酶表达水平进行研究,发现△ugp/ggp突变株中几乎检测不到纤维素酶活力。结果显示,UDPG为R. stolonifer胞内合成纤维二糖的主要糖基供体,而GDPG可能是UDPG的替代物,在UDPG不足时维持胞内二糖合成。此外,利用生物信息学方法对CBS结构功能深入分析,经丙氨酸扫描确定其合成纤维二糖的关键作用残基为Asp210和Asp300,为后续进一步研究及理性改造提供方向和理论依据。  相似文献   

20.
The replication origin (ori) on the Bacillus subtilis genome was determined by the hybridization between the first-replicating DNA region and the cloned fragments from the ori region. The first-replicating DNA region was labeled specifically by [3H]thymidine in the presence of an inhibitor for DNA polymerase during a synchronous initiation of the chromosomal replication by germinating spores starved for thymine, and isolated by a sucrose density gradient centrifugation. Most of the labeled DNA molecules are small in size (up to 1000 bases long). The 45-kb ori region was cloned first in a λ Charon vector and then subcloned in pBR vectors. Restriction fragments from these cloned DNAs were purified by electrophoresis in agarose gels.

Only one region within the 45-kb ori region shows strong hybridization with the first-replicating DNA. Restriction fragments from this region were cloned in a phage M13 vector and separated into complementary strands. Hybridization of the labeled DNA with these cloned single-stranded fragments revealed that one site of the ori is located in each strand and they are some 2-kb apart from each other. Replication starts from these sites and proceeds inwards to pass each other.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号