首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.

No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.

In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  相似文献   

2.
Interestingly, there is a major difference in turnover rate between ornithine decarboxylases (ODCs) from various trypanosomatids. ODCs from Trypanosoma brucei and Leishmania donovani are both stable proteins, whereas ODC from Crithidia fasciculata is a metabolically unstable protein in the parasite. C. fasciculata ODC is also rapidly degraded in mammalian systems, whereas the closely related L. donovani ODC is not. The degradation of C. fasciculata ODC in the mammalian systems is shown to be dependent on a functional 26 S proteasome. However, in contrast to the degradation of mammalian ODC, the degradation of C. fasciculata ODC does not involve antizyme. Instead, it appears the degradation of C. fasciculata ODC may be associated with poly-ubiquitination of the enzyme.  相似文献   

3.
4.
The half-lives of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) have been studied in fetuses and placentas from 18-day-pregnant rats. While the turnover of fetal and placental SAMDC were slightly different (t1/2 = 38 and 75 min, respectively) the half-lives of fetal and placental ODC differed markedly. T1/2 of fetal ODC was 15 min, similar to other mammalian ODCs, but placental ODC showed a relatively high half-life, about 160 min. According to that, placental ODC was more resistant than the fetal enzyme to in vivo hyperthermic treatment (40 degrees C, 1 h). Our results suggest that the degradative mechanisms for ODC in rat placenta could be regulated differently to those in other mammalian tissues.  相似文献   

5.
The in vivo activities of arginine and ornithine decarboxylases, key enzymes in the biosynthesis of putrescine and thus polyamines, were measured in three different cell lines of carrot (Daucus carota) during growth and somatic embryogenesis. The activities of these two enzymes differed in the different cell lines in the presence of various levels of auxin (2,4 dichlorophenoxy acetic acid), but was highest during periods of active cell division. During somatic embryo development, the activities of both enzymes were highest during globular stage formation. Thus, both enzymes were found to be active during growth and somatic embryogenesis and could contribute to polyamine biosynthesis.  相似文献   

6.
Paramecium bursaria chlorella virus (PBCV-1) is a large double-stranded DNA virus that infects chlorella-like green algae. The virus encodes a homolog of eukaryotic ornithine decarboxylase (ODC) that was previously demonstrated to be capable of decarboxylating l-ornithine. However, the active site of this enzyme contains a key amino acid substitution (Glu for Asp) of a residue that interacts with the delta-amino group of ornithine analogs in the x-ray structures of ODC. To determine whether this active-site change affects substrate specificity, kinetic analysis of the PBCV-1 decarboxylase (PBCV-1 DC) on three basic amino acids was undertaken. The k(cat)/K(m) for l-arginine is 550-fold higher than for either l-ornithine or l-lysine, which were decarboxylated with similar efficiency. In addition, alpha-difluoromethylarginine was a more potent inhibitor of the enzyme than alpha-difluoromethylornithine. Mass spectrometric analysis demonstrated that inactivation was consistent with the formation of a covalent adduct at Cys(347). These data demonstrate that PBCV-1 DC should be reclassified as an arginine decarboxylase. The eukaryotic ODCs, as well as PBCV-1 DC, are only distantly related to the bacterial and plant arginine decarboxylases from their common beta/alpha-fold class; thus, the finding that PBCV-1 DC prefers l-arginine to l-ornithine was unexpected based on evolutionary analysis. Mutational analysis was carried out to determine whether the Asp-to-Glu substitution at position 296 (position 332 in Trypanosoma brucei ODC) conferred the change in substrate specificity. This residue was found to be an important determinant of substrate binding for both l-arginine and l-ornithine, but it is not sufficient to encode the change in substrate preference.  相似文献   

7.
8.
Whether guanosine tetraphosphate (ppGpp) has a role in the regulation of the putrescine biosynthetic enzyme, ornithine decarboxylase, in Escherichia coli is controversial. Different laboratories have reported either direct or indirect correlations between ppGpp levels and ornithine decarboxylase activity using different in vivo conditions. In this report, using conditions in vivo to modulate ppGpp levels, experiments are described which bear on the controversy. The rates of synthesis and biological activities of the biosynthetic ornithine and arginine decarboxylases (ODC and ADC) were measured in E. coli K-12 during experimental growth and during nutritional shift-up. There were good correlations between changes in their respective activities and the rates of synthesis of these enzymes during steady state or shift-up. ODC activity or rate of synthesis changed directly in concert with ppGpp levels, while ADC activity or rate of synthesis changed inversely with ppGpp levels. These observations support the contention that ppGpp does not inhibit ODC activity.  相似文献   

9.
The authors describe a method for the determination of decarboxylase activity in fungi. Some of the strains of test fungi (Stachybotrys alternans, Fusarium andAspergillus) displayed arginine, lysine, phenylalanine, asparaginic and glutamic decarboxylase activity. No tyrosine, tryptophane, histidine or ornithine decarboxylase activity was found. Some of the factors influencing the activity of these enzymes are discussed.  相似文献   

10.
The levels of putrescine and spermine in mouse brain were rather constant at different times of day, as were the activities of ornithine andS-adenosyl-l-methionine decarboxylases. Contrary to an earlier report, the level of spermidine was found to be relatively constant. A possibly significant feature in the present results was the steady decline during the light period and rise during darkness of cerebral spermidine and spermine levels, the differences between maximum and minimum being about 15% for both compounds.  相似文献   

11.
12.
13.
We used sequence and structural comparisons to determine the fold for eukaryotic ornithine decarboxylase, which we found is related to alanine racemase. These enzymes have no detectable sequence identity with any protein of known structure, including three pyridoxal phosphate-utilizing enzymes. Our studies suggest that the N-terminal domain of ornithine decarboxylase folds into a beta/alpha-barrel. Through the analysis of known barrel structures we developed a topographic model of the pyridoxal phosphate-binding domain of ornithine decarboxylase, which predicts that the Schiff base lysine and a conserved glycine-rich sequence both map to the C-termini of the beta-strands. Other residues in this domain that are likely to have essential roles in catalysis, substrate, and cofactor binding were also identified, suggesting that this model will be a suitable guide to mutagenic analysis of the enzyme mechanism.  相似文献   

14.
Biosynthetic ornithine decarboxylase was purified 4300-fold from Escherichia coli to a purity of approximately 85% as judged by polyacrylamide gel electrophoresis. The enzyme showed hyperbolic kinetics with a Km of 5.6 mM for ornithine and 1.0 micronM for pyridoxal phosphate and it was competitively inhibited by putrescine and spermidine. The biosynthetic decarboxylase was compared with the biodegradative ornithine decarboxylase [Applebaum, D., et al. (1975), Biochemistry 14, 3675]. Both enzymes were dimers of 80 000-82 000 molecular weight and exhibited similar kinetic properties. However, they differed significantly in other respects. The pH optimum of the biosynthetic enzyme was 8.1, compared with 6.9 for the biodegradative. Both enzymes were activated by nucleotides, but with different specificity. Antibody to the purified biodegradative ornithine decarboxylase did not cross-react with the biosynthetic enzyme. The evolutionary relationship of these two decarboxylases to the other amino acid decarboxylases of E. coli is discussed.  相似文献   

15.
16.
17.
Diaminopimelate decarboxylase (DAPDC) and ornithine decarboxylase (ODC) are pyridoxal 5'-phosphate dependent enzymes that are critical to microbial growth and pathogenicity. The latter is the target of drugs that cure African sleeping sickness, while the former is an attractive target for antibacterials. These two enzymes share the (β/α)(8) (i.e., TIM barrel) fold with alanine racemase, another pyridoxal 5'-phosphate dependent enzyme critical to bacterial survival. The active site structural homology between DAPDC and ODC is striking even though DAPDC catalyzes the decarboxylation of a D stereocenter with inversion of configuration and ODC catalyzes the decarboxylation of an L stereocenter with retention of configuration. Here, the structural and mechanistic bases of these interesting properties are explored using reactions of alternate substrates with both enzymes. It is concluded that simple binding determinants do not control the observed stereochemical specificities for decarboxylation, and a concerted decarboxylation/proton transfer at Cα of the D stereocenter of diaminopimelate is a possible mechanism for the observed specificity with DAPDC.  相似文献   

18.
Maize calluses and their isolated chloroplasts were analysed to study the changes in polyamine content, arginine and ornithine decarboxylases and transglutaminase activities during light/dark phases of the first day after subculture in maintenance medium (containing 2,4-D) and differentiation medium (without 2,4-D). Free polyamine content changed significantly in both differentiating calluses and chloroplasts showing a maximum during light phase and also increasing after mid-dark phase. Acid-insoluble polyamines showed a similar trend. In whole cells from the callus cultured in maintenance medium, the changes were not significant, except for free putrescine which increased in the dark phase. In chloroplasts of both types of calluses, the trend was similar. Arginine decarboxylase activity in vitro assayed in optimal conditions was not affected by hormone deprivation either in whole cells from the callus or in chloroplasts. The formation of putrescine by arginine decarboxylase activity gradually increased in the light until 9–12 h after subculture, whereas at the onset of the dark phase, a significant decrease was observed. Ornithine decarboxylase activity in vitro always showed slight changes, except in growing callus where putrescine synthesis increased abruptly at 8 h and decreased thereafter. Transglutaminase was immunodetected in whole cells from the callus and in isolated chloroplasts by western blot. In the entire cells, protein substrates were found which were not present in isolated chloroplast. Transglutaminase activity was light sensitive and also affected by hormone deprivation. This enzyme was more active in differentiation than in maintenance medium, in both callus and chloroplasts, in light and dark phases. These data indicate that, the parameters studied here are not only light affected but also regulated by a daily rhythm.  相似文献   

19.
C Danzin  P Casara 《FEBS letters》1984,174(2):275-278
Disulfonic stilbenes which block the anion-transport in red blood cells were found to inhibit the brain microsomal Na+/K+-ATPase but not the electrogenic Na+/K+ pump in intact muscle cells. In contrast to the anion-transport system, the Na+/K+-ATPase is inhibited by disulfonic stilbenes, apparently from the cytoplasmic side of the membrane. The pathways for anion and active cation transport are thus different but similar groups of sulfhydryl and/or amino acid residues must play an important role in both systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号