首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Embryos deficient in the morphogen Sonic hedgehog (Shh) or the endocytic receptor megalin exhibit common neurodevelopmental abnormalities. Therefore, we have investigated the possibility that a functional relationship exists between the two proteins. During embryonic development, megalin was found to be expressed along the apical surfaces of neuroepithelial cells and was coexpressed with Shh in the ventral floor plate of the neural tube. Using enzyme-linked immunosorbent assay, homologous ligand displacement, and surface plasmon resonance techniques, it was found that the amino-terminal fragment of Shh (N-Shh) bound to megalin with high affinity. Megalin-expressing cells internalized N-Shh through a mechanism that was inhibited by antagonists of megalin, viz. anti-receptor-associated protein and anti-megalin antibodies. Heparin also inhibited N-Shh endocytosis, implicating proteoglycans in the internalization process, as has been described for other megalin ligands. Use of chloroquine to inhibit lysosomal proteinase activity showed that N-Shh endocytosed via megalin was not efficiently targeted to the lysosomes for degradation. The ability of megalin-internalized N-Shh to bypass lysosomes may relate to the finding that the interaction between N-Shh and megalin was resistant to dissociation with low pH. Together, these findings show that megalin is an efficient endocytic receptor for N-Shh. Furthermore, they implicate megalin as a new regulatory component of the Shh signaling pathway.  相似文献   

2.
CD84 is a member of the CD2 subset of the Ig superfamily of cell surface molecules. Its cytoplasmic tail binds to Src homology 2 domain-containing protein 1A (signaling lymphocytic activation molecule-associated protein), a protein encoded by the X-linked lymphoproliferative disease gene. It is preferentially expressed on B lymphocytes, monocytes, and platelets. We show that it is also expressed on thymocytes and T cells. CD84 was positive on CD4-CD8- thymocytes, and its expression decreased with cell maturation. It is expressed on mature T cells preferentially on CD45RO+. To identify the CD84 ligand, we generated a soluble Ig fusion protein containing the human CD84 extracellular domains (CD84-Ig). Because receptor-ligand interactions occur between several members of this subfamily, we assayed CD84-Ig binding with all members of the CD2 family. CD84-Ig bound to CD84-transfected cells, whereas no binding was detected with cells expressing other CD2 subfamily receptors, showing that CD84 binds to itself. Anti-CD84 mAbs recognizing epitopes wholly within domain 1 of CD84 blocked the binding of the CD84-Ig fusion protein to CD84-transfected cells and platelets. Data from CD84 domain human/mouse chimeras further revealed that only the first extracellular domain of the molecule is involved in the ligand receptor recognition. The CD84-CD84 interaction was independent of its cytoplasmic tail. Finally, concurrent ligation of human CD84 with mAbs or CD84-Ig and CD3 enhanced IFN-gamma secretion in human lymphocytes. Thus, CD84 is its own ligand and acts as a costimulatory molecule.  相似文献   

3.
The putative Rab3 effector RIM (Rab3-interacting molecule) was detected by Northern blotting, RT-PCR and Western blotting in native pancreatic beta-cells as well as in the derived cell lines INS-1E and HIT-T15. RIM was localized on the plasma membrane of INS-1E cells and beta-cells. An involvement of RIM in insulin exocytosis was indicated by transfection experiments of INS-1E cells with the Rab3 binding domain of RIM. This domain enhanced glucose-stimulated secretion in intact cells and Ca(2+)-stimulated exocytosis in permeabilized cells. Co-expression of Rab3A reversed the effect of RIM on exocytosis. These results suggest an implication of RIM in the control of insulin secretion.  相似文献   

4.
Endocytosis of AMPA receptors and other postsynaptic cargo occurs at endocytic zones (EZs), stably positioned sites of clathrin adjacent to the postsynaptic density (PSD). The tight localization of postsynaptic endocytosis is thought to control spine composition and regulate synaptic transmission. However, the mechanisms that situate the EZ near the PSD and the role of spine endocytosis in synaptic transmission are unknown. Here, we report that a physical link between dynamin-3 and the postsynaptic adaptor Homer positions the EZ near the PSD. Disruption of dynamin-3 or its interaction with Homer uncouples the PSD from the EZ, resulting in synapses lacking postsynaptic clathrin. Loss of the EZ leads to a loss of synaptic AMPA receptors and reduced excitatory synaptic transmission that corresponds with impaired synaptic recycling. Thus, a physical link between the PSD and the EZ ensures localized endocytosis and recycling by recapturing and maintaining a proximate pool of cycling AMPA receptors.  相似文献   

5.
6.
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.  相似文献   

7.
Decay-accelerating factor (DAF) is a glycosylphosphatidylinositol-anchored membrane protein that protects cells from damage by autologous complement activation. Of the four mAb against DAF prepared in our laboratory, 1C6 completely blocked DAF function, whereas 5B2 partially blocked it. Using these mAb, we investigated whether human monocytes were activated via DAF molecules. When monocytes were incubated with 1C6 alone, glucose was consumed in significant amounts and phagocytosis of latex beads was enhanced, indicating that the monocytes had been activated. However, 1C6 did not enhance the production of monokines, TNF-alpha, and IL-1 alpha and -beta. The F(ab')2 fragment of 1C6 also activated monocytes, whereas 5B2 and the Fab fragment of 1C6 could not. To further examine monocyte activation, these cells were treated with phosphatidylinositol-specific phospholipase C. Increased glucose consumption and enhanced phagocytic activity by 1C6 were considerably reduced in monocytes treated with phosphatidylinositol-specific phospholipase C. In addition, we found that 1C6 stimulated the generation of inositol trisphosphate. These results demonstrate that the signal transmitted via the DAF molecule is capable of stimulating monocytes.  相似文献   

8.
We have investigated the in vivo functional role of rab5, a small GTPase associated with the plasma membrane and early endosomes. Wild-type rab5 or rab5-ile133, a mutant protein defective in GTP binding, was overexpressed in baby hamster kidney cells. In cells expressing the rab5ile 133 protein, the rate of endocytosis was decreased by 50% compared with normal, while the rate of recycling was not significantly affected. The morphology of early endosomes was also drastically changed by the mutant protein, which induced accumulation of small tubules and vesicles at the periphery of the cell. Surprisingly, overexpression of wild-type rab5 accelerated the uptake of endocytic markers and led to the appearance of atypically large early endosomes. We conclude that rab5 is a rate-limiting component of the machinery regulating the kinetics of membrane traffic in the early endocytic pathway.  相似文献   

9.
Reorganisation of peripheral actin filaments as a prelude to exocytosis   总被引:18,自引:0,他引:18  
Evidence is presented, from studies on the adrenal chromaffin cell, that reorganisation of the cortical actin network is necessary to allow granules to reach exocytotic sites in stimulated cells. This reorganisation may involve changes in actin filament cross-linking, assembly and interactions with secretory granule and plasma membranes. The possibility is discussed that cytoskeletal elements including the membrane-binding proteins caldesmon, p70 and p36 may be involved in granule-plasmalemmal interactions immediately prior to exocytosis.  相似文献   

10.
11.
Anamorsin (AM) (also called CIAPIN-1) is a cell-death-defying factor. AM deficient mice die during late gestation; AM deficient embryos are anemic and very small compared to wild type (WT) embryos. It is thought that AM plays crucial roles in hematopoiesis and embryogenesis. To clarify the mechanisms of AM functions, we performed the yeast-two-hybrid assay to identify AM-interacting molecules; we found that PICOT (PKCθ interacting cousin of thioredoxin) preferentially bound to AM. We also showed that the N-terminal regions of both AM and PICOT were essential for their bindings and the inhibition of interaction of both molecules might lead to the cell growth retardation. Both PICOT and the yeast homolog of AM are known to be iron–sulfur proteins. The phenotype of PICOT deficient mice is very similar to that of anamorsin deficient mice; both mice are embryonic lethal. These data suggest that AM and PICOT might play cooperatively essential roles in embryogenesis as iron–sulfur cluster proteins.  相似文献   

12.
Decorin is a small leucine-rich proteoglycan that modulates the activity of transforming growth factor type beta and other growth factors and thereby influences the processes of proliferation and differentiation in a wide array of physiological and pathological reactions. Hence, understanding the regulatory mechanisms of decorin activity has broad implications. Here we report that the extracellular levels of decorin are controlled by receptor-mediated catabolism, involving the low density lipoprotein receptor family member, low density lipoprotein receptor-related protein (LRP). We show that decorin is endocytosed and degraded by C2C12 myoblast cells and that both processes are blocked by suppressing LRP expression using short interfering RNA. The same occurs with CHO cells, but not with CHO cells genetically deficient in LRP. Finally, we show that LRP-null CHO cells, transfected to express mini-LRP polypeptides containing either the second or fourth LRP ligand-binding domains, carry out decorin endocytosis and lysosomal degradation. These findings point to LRP-mediated catabolism as a new control pathway for the biological activities of decorin, specifically for its ability to influence extracellular matrix signaling.  相似文献   

13.
14.
CD59 functions as a signal-transducing molecule for human T cell activation.   总被引:16,自引:0,他引:16  
The CD59 Ag is a 20-kDa protein that is widely expressed on most leukocytes and RBC, is coupled to the membrane by a phosphatidylinositol-glycan anchoring structure, plays a role in cell interaction between monocytes and T cells, and also functions as an inhibitor of cytolysis by the terminal C components C5b-9. Because this molecule is structurally related to the murine Ly-6 family of Ag, we have investigated whether anti-CD59 mAb might be capable of activating human T lymphocytes in a manner similar to that described for antibodies to the murine Ly-6 Ag. In the presence of the appropriate co-stimulators, mAb to one of the two epitopes on CD59 were capable of inducing both a rise in intracytoplasmic free Ca2+, inositol phosphate production, IL-2 production, and T cell proliferation. Anti-CD59-induced inositol phosphate turnover and IL-2 production were dependent on co-expression of the CD3/TCR complex. CD59-loss mutants of the Jurkat cell line were completely responsive to stimulation by anti-CD3 thereby demonstrating that CD59 does not play a role as a signal transducer downstream from the TCR. Taken together, these results demonstrate that the CD59 Ag can play multiple distinct roles in the regulation of the immune response.  相似文献   

15.
Carcinoembryonic antigen (CEA) is a member of a family of cell surface glycoproteins that are produced in excess in essentially all human colon carcinomas and in a high proportion of carcinomas at many other sites. The function of this widely used tumor marker and its relevance to malignant transformation is therefore of considerable interest. We demonstrate here that CEA mediates Ca2+-independent, homotypic aggregation of cultured human colon adenocarcinoma cells (LS-180) and rodent cells transfected with functional CEA cDNA. Furthermore, CEA can effect the homotypic sorting of cells in heterogeneous populations of aggregating cells. CEA can thus be considered a new addition to the family of intercellular adhesion molecules. We also show that, whereas CEA is localized mainly to epithelial cell membranes facing the lumen in normal adult intestine, it is found on adjacent cell membranes in both embryonic intestine and colonic tumors. A model for the role of CEA in the tissue architecture of adult, embryonic, and aberrant tumor intestinal epithelium is presented.  相似文献   

16.
Endolysosomal vesicles form a highly dynamic multifunctional cellular compartment that contains multiple highly potent proteolytic enzymes. Originally these proteases have been assigned to cooperate solely in executing the unselective ‘bulk proteolysis’ within the acidic milieu of the lysosome. Although to some degree this notion still holds true, evidence is accumulating for specific and regulatory functions of individual ‘acidic’ proteases in many cellular processes linked to the endosomal/lysosomal compartment. Here we summarize and discuss the functions of individual endolysosomal proteases in such diverse processes as the termination of growth factor signaling, lipoprotein particle degradation, infection, antigen presentation, and autophagy. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

17.
Chemerin is a chemoattractant involved in innate and adaptive immunity as well as an adipokine implicated in adipocyte differentiation. Chemerin circulates as an inactive precursor in blood whose bioactivity is closely regulated through proteolytic processing at its C terminus. We developed methodology for production of different recombinant chemerin isoforms (chem163S, chem157S, and chem155A) which allowed us to obtain large quantities of these proteins with purity of >95%. Chem158K was generated from chem163S by plasmin cleavage. Characterization by mass spectrometry and Edman degradation demonstrated that both the N and C termini were correct for each isoform. Ca(2+) mobilization assays showed that the EC(50) values for chem163S and chem158K were 54.2 ± 19.9 nm and 65.2 ± 13.2 nm, respectively, whereas chem157S had a ~50-fold higher potency with an EC(50) of 1.2 ± 0.7 nm. Chem155A had no agonist activity and weak antagonist activity, causing a 50% reduction of chem157S activity at a molar ratio of 100:1. Similar results were obtained in a chemotaxis assay. Because chem158K is the dominant form in cerebrospinal fluid from patients with glioblastoma (GBM), we examined the significance of chemerin in GBM biology. In silico analysis showed chemerin mRNA was significantly increased in tissue from grade III and IV gliomas. Furthermore, U-87 MG cells, a human GBM line, express the chemerin receptors, chemokine-like receptor 1 and chemokine receptor-like 2, and chem157S triggered Ca(2+) flux. This study emphasized the necessity of appropriate C-terminal proteolytic processing to generate the likely physiologic form of active chemerin, chem157S, and suggested a possible role in malignant GBM.  相似文献   

18.
Elevated vascular endothelial growth factor (VEGF) and complement activation are implicated in the pathogenesis of different ocular diseases. The objective of this study was to investigate the hypothesis that dual inhibition of both VEGF and complement activation would confer better protection against ocular inflammation and neovascularization. In this study, we engineered a secreted chimeric VEGF inhibitor domain (VID), a complement inhibitor domain (CID) and a dual inhibitor (ACVP1). Vectors expressing these three inhibitors were constructed and packaged into AAV2 (sextY‐F) particles. The expression and secretion of the proteins were validated by Western blot. The effects of these inhibitors expressed from AAV2 vectors were examined in endotoxin‐induced uveitis (EIU), experimental autoimmune uveoretinitis (EAU) and choroidal neovascularization (CNV) mouse models. The AAV2 vectors expressing the CID‐ and ACVP1‐attenuated inflammation in EIU and EAU model, whereas the vector expressing VID showed improved retinal structure damaged by EAU, but not affect the infiltration of inflammatory cells in EAU or EIU eyes. Both VID and CID vectors improved laser‐induced retinal and choroid/RPE injuries and CNV, whereas ACVP1 vector provided significantly better protection. Our results suggest that gene therapy targeting VEGF and complement components could provide an innovative and long‐term strategy for ocular inflammatory and neovascular diseases.  相似文献   

19.
Biological monitoring refers to the use of living organisms to evaluate environmental conditions. Of particular relevance to the health of marine ecosystems is the improvement of methodologies of biological monitoring to provide highly ecologically sensitive indices of exposure. We have shown that anisakid nematodes, a parasite group widely distributed in oceans that infects a wide range of host species, can accumulate essential and non-essential metals to levels far in excess of their host tissues. The fact that they could be used as biomarkers of trace-metal contamination in studies of environmental impact suggests a potential use as a monitor species in a marine ecosystem under anthropogenic stress because they might produce a warning or alert signal of high ecological relevance.  相似文献   

20.
BackgroundCytochrome c is well known to be released from mitochondria into the cytosol where it can initiate apoptosis. Recent studies indicate that cytochrome c is also released into the extracellular space by both healthy and damaged cells, where its function is not well understood. We hypothesized that extracellular cytochrome c could function as an intercellular signaling molecule of the brain, which is recognized by brain microglia. These cells belong to the mononuclear phagocyte system and can be activated by endogenous substances associated with diverse pathologies including trauma, ischemic damage and neurodegenerative diseases.MethodsThree different cell types were used to model microglia. Respiratory burst activity, nitric oxide production and cytotoxic secretions were measured following exposure of microglial cells to cytochrome c.ResultsWe showed that extracellular cytochrome c primed the respiratory burst response of differentiated HL-60 cells, enhanced nitric oxide secretion by BV-2 cells, and augmented cytotoxicity of differentiated THP-1 cells. We demonstrated that the effects of cytochrome c on microglia-like cells were at least partially mediated by the toll-like receptor 4 (TLR4) and c-Jun N-terminal kinases (JNK) signaling pathway.ConclusionsExtracellular cytochrome c can interact with microglia TLR4 and modulate select functions of these brain immune cells.General significanceOur data identifies extracellular cytochrome c as a potential intercellular signaling molecule, which may be recognized by microglia causing or enhancing their immune activation. The data obtained support targeting TLR4 and JNK signaling as potential treatment strategies for brain diseases characterized by excessive cellular death and activation of microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号