首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiostatin, the N-terminal four kringles (K1-4) of plasminogen, blocks tumor-mediated angiogenesis and has great therapeutic potential. However, angiostatin's mechanism of anti-angiogenic action is unclear. We found that bovine arterial endothelial (BAE) cells adhere to angiostatin in an integrin-dependent manner and that integrins alpha(v)beta(3), alpha(9)beta(1), and to a lesser extent alpha(4)beta(1), specifically bind to angiostatin. alpha(v)beta(3) is a predominant receptor for angiostatin on BAE cells, since a function-blocking antibody to alpha(v)beta(3) effectively blocks adhesion of BAE cells to angiostatin, but an antibody to alpha(9)beta(1) does not. epsilon-Aminocaproic acid, a Lys analogue, effectively blocks angiostatin binding to BAE cells, indicating that an unoccupied Lys-binding site of the kringles may be required for integrin binding. It is known that other plasminogen fragments containing three or five kringles (K1-3 or K1-5) have an anti-angiogenic effect, but plasminogen itself does not. We found that K1-3 and K1-5 bind to alpha(v)beta(3), but plasminogen does not. These results suggest that the anti-angiogenic action of angiostatin may be mediated via interaction with alpha(v)beta(3). Angiostatin binding to alpha(v)beta(3) does not strongly induce stress-fiber formation, suggesting that angiostatin may prevent angiogenesis by perturbing the alpha(v)beta(3)-mediated signal transduction that may be necessary for angiogenesis.  相似文献   

2.
Inositol 1,4,5-trisphosphate (IP(3)) receptors form tetrameric channels in endoplasmic reticulum membranes of mammalian cells and mediate IP(3)-induced calcium mobilization. In response to various extracellular stimuli that persistently elevate IP(3) levels, IP(3) receptors are also ubiquitinated and then degraded by the proteasome. Here, for endogenous type 1 IP(3) receptor (IP(3)R1) activated by endogenous signaling pathways and processed by endogenous enzymes, we sought to determine the sites of ubiquitination and the composition of attached ubiquitin conjugates. Our findings are (i) that at least 11 of the 167 lysines in IP(3)R1 can be ubiquitinated and that these are clustered in the regulatory domain and are found in surface regions, (ii) that at least approximately 40% of the IP(3)R1-associated ubiquitin is monoubiquitin, (iii) that both Lys(48) and Lys(63) linkages are abundant in attached ubiquitin chains, and (iv) that Lys(63) linkages accumulate most rapidly. Additionally, we find that not all IP(3)R1 subunits in a tetramer are ubiquitinated and that nontetrameric IP(3)R1 complexes form as degradation proceeds, suggesting that ubiquitinated subunits may be selectively extracted and degraded. Overall, these data show that endogenous IP(3)R1 is tagged with an array of ubiquitin conjugates at multiple sites and that both IP(3)R1 ubiquitination and degradation are highly complex processes.  相似文献   

3.
15-Deoxy-Delta(12,14)-PDJ(2) (15d-PGJ(2)) is a degradation product of PGD(2) that has been proposed as an anti-inflammatory compound because of its various inhibitory effects, some of which are mediated by peroxisome proliferator-activated receptor-gamma. In contrast to its reported inhibitory effects on macrophages and other cells, we found that this compound is a potent activator of eosinophils, inducing calcium mobilization, actin polymerization, and CD11b expression. It is selective for eosinophils, having little or no effect on neutrophils or monocytes. 15d-PGJ(2) has an EC(50) of approximately 10 nM, similar to that of its precursor, PGD(2). The concentrations of 15d-PGJ(2) required to activate eosinophils are thus much lower than those required for its anti-inflammatory effects (usually micromolar). 15-Deoxy-Delta(12,14)-prostaglandin D(2) (15d-PGD(2)) is also a potent activator of eosinophils, with an EC(50) about the same as that of PGD(2), whereas Delta(12)-PGJ(2) is slightly less potent. Eosinophils pretreated with PGD(2) no longer respond to 15d-PGJ(2), and vice versa, but in both cases the cells still respond to another eicosanoid proinflammatory mediator, 5-oxo-6,8,11,14-eicosatetraenoic acid. This indicates that the effects of 15d-PGJ(2) are mediated by the DP(2)/chemoattractant receptor-homologous molecule expressed on Th2 cells that has recently been identified in eosinophils. 15d-PGJ(2) is selective for the DP(2) receptor, in that it has no effect on DP(1) receptor-mediated adenylyl cyclase activity in platelets. We conclude that 15d-PGJ(2) and 15d-PGD(2) are selective DP(2) receptor agonists that activate human eosinophils with potencies at least 100 times greater than those for the proposed anti-inflammatory effects of 15d-PGJ(2) on other cells.  相似文献   

4.
Apoptosis was studied under conditions that mimic the steady state of H(2)O(2) in vivo. This is at variance with previous studies involving a bolus addition of H(2)O(2), a procedure that disrupts the cellular homeostasis. The results allowed us to define three phases for H(2)O(2)-induced apoptosis in Jurkat T-cells with reference to cytosolic steady state concentrations of H(2)O(2) [(H(2)O(2))(ss)]: (H(2)O(2))(ss) values below 0.7 microM elicited no effects; (H(2)O(2))(ss) approximately 0.7-3 microM induced apoptosis; and (H(2)O(2))(ss) > 3 microM yielded no additional apoptosis and a gradual shift towards necrosis as the mode of cell death were observed. H(2)O(2)-induced apoptosis was not affected by either BCNU, an inhibitor of glutathione reductase, or diamide, a compound that reacts both with low-molecular weight and protein thiols, or selenols. Glutathione depletion, accomplished by incubating cells either with buthionine sulfoximine or in cystine-free medium, rendered cells more sensitive to H(2)O(2)-induced apoptosis, but did not change the threshold and saturating concentrations of H(2)O(2) that induced apoptosis. Two unrelated metal chelators, desferrioxamine and dipyridyl, strongly protected against H(2)O(2)-induced apoptosis. It may be concluded that, under conditions of H(2)O(2) delivery that mimic in vivo situations, the oxidative event that triggers the induction of apoptosis by H(2)O(2) is a Fenton-type reaction and is independent of the thiol or selenium states of the cell.  相似文献   

5.
The collagen triple helix is one of the most abundant protein motifs in animals. The structural motif of collagen is the triple helix formed by the repeated sequence of -Gly-Xaa-Yaa-. Previous reports showed that H-(Pro-4(R)Hyp-Gly)(10)-OH (where '4(R)Hyp' is (2S,4R)-4-hydroxyproline) forms a trimeric structure, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not form a triple helix. Compared with H-(Pro-Pro-Gly)(10)-OH, the melting temperature of H-(Pro-4(R)Hyp-Gly)(10)-OH is higher, suggesting that 4(R)Hyp in the Yaa position has a stabilizing effect. The inability of triple helix formation of H-(4(R)Hyp-Pro-Gly)(10)-OH has been explained by a stereoelectronic effect, but the details are unknown. In this study, we synthesized a peptide that contains 4(R)Hyp in both the Xaa and the Yaa positions, that is, Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) and compared it to Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2), and Ac-(Gly-4(R)Hyp-Pro)(10)-NH(2). Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) showed a polyproline II-like circular dichroic spectrum in water. The thermal transition temperatures measured by circular dichroism and differential scanning calorimetry were slightly higher than the values measured for Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2) under the same conditions. For Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), the calorimetric and the van't Hoff transition enthalpy DeltaH were significantly smaller than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). We postulate that the denatured states of the two peptides are significantly different, with Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forming a more polyproline II-like structure instead of a random coil. Two-dimensional nuclear Overhauser effect spectroscopy suggests that the triple helical structure of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) is more flexible than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). This is confirmed by the kinetics of amide (1)H exchange with solvent deuterium of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), which is faster than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). The higher transition temperature of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), can be explained by the higher trans/cis ratio of the Gly-4(R)Hyp peptide bonds than that of the Gly-Pro bonds, and this ratio compensates for the weaker interchain hydrogen bonds.  相似文献   

6.
A yeast two-hybrid approach was used to discern possible new effectors for the betagamma subunit of heterotrimeric G proteins. Three of the clones isolated are structurally similar to Gbeta, each exhibiting the WD40 repeat motif. Two of these proteins, the receptor for activated C kinase 1 (RACK1) and the dynein intermediate chain, co-immunoprecipitate with Gbetagamma using an anti-Gbeta antibody. The third protein, AAH20044, has no known function; however, sequence analysis indicates that it is a WD40 repeat protein. Further investigation with RACK1 shows that it not only interacts with Gbeta(1)gamma(1) but also unexpectedly with the transducin heterotrimer Galpha(t)beta(1)gamma(1). Galpha(t) alone does not interact, but it must contribute to the interaction because the apparent EC(50) value of RACK1 for Galpha(t)beta(1)gamma(1) is 3-fold greater than that for Gbeta(1)gamma(1) (0.1 versus 0.3 microm). RACK1 is a scaffold that interacts with several proteins, among which are activated betaIIPKC and dynamin-1 (1). betaIIPKC and dynamin-1 compete with Gbeta(1)gamma(1) and Galpha(t)beta(1)gamma(1) for interaction with RACK1. These findings have several implications: 1) that WD40 repeat proteins may interact with each other; 2) that Gbetagamma interacts differently with RACK1 than with its other known effectors; and/or 3) that the G protein-RACK1 complex may constitute a signaling scaffold important for intracellular responses.  相似文献   

7.
The herpes simplex virus type 1 gamma(1)34.5 gene product precludes the host-mediated protein shutoff response induced by activated protein kinase R (PKR). Earlier studies demonstrated that recombinant viruses lacking the gamma(1)34.5 gene (Deltagamma(1)34.5) developed secondary mutations that allowed earlier U(S)11 expression and enabled continued protein synthesis. Further, in vitro studies demonstrated that a recombinant expressed U(S)11 protein binds PKR, blocks the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) by activated PKR, and, if provided prior to PKR activation, precluded PKR autophosphorylation. The present study furthers the hypothesis that early U(S)11 production precludes PKR-mediated host protein shutoff by demonstrating that (i) U(S)11 and PKR interact in the context of viral infection, (ii) this interaction is RNA dependent and requires a 30-amino-acid domain (amino acids 91 to 121) in the carboxyl domain of the U(S)11 protein, (iii) the proteins biochemically colocalize in the S100 ribosomal fraction, and (iv) there is a PKR substrate domain immediately adjacent to the binding domain. The results suggest that the U(S)11 interaction with PKR at the ribosome is RNA dependent and that the U(S)11 protein contains a substrate domain with homology to eIF-2alpha in close proximity to an essential binding domain.  相似文献   

8.
The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that controls macrophage migration in part by interacting with β(2) integrin receptors. However, the molecular mechanism underlying LRP1 integrin recognition is poorly understood. Here, we report that LRP1 specifically recognizes α(M)β(2) but not its homologous receptor α(L)β(2). The interaction between these two cellular receptors in macrophages is significantly enhanced upon α(M)β(2) activation by LPS and is mediated by multiple regions in both LRP1 and α(M)β(2). Specifically, we find that both the heavy and light chains of LRP1 are involved in α(M)β(2) binding. Within the heavy chain, the binding is mediated primarily via the second and fourth ligand binding repeats. For α(M)β(2), we find that the α(M)-I domain represents a major LRP1 recognition site. Indeed, substitution of the I domain of the α(L)β(2) receptor with that of α(M) confers the α(L)β(2) receptor with the ability to interact with LRP1. Furthermore, we show that residues (160)EQLKKSKTL(170) within the α(M)-I domain represent a major LRP1 recognition site. Given that perturbation of this specific sequence leads to altered adhesive activity of α(M)β(2), our finding suggests that binding of LRP1 to α(M)β(2) could alter integrin function. Indeed, we further demonstrate that the soluble form of LRP1 (sLRP1) inhibits α(M)β(2)-mediated adhesion of cells to fibrinogen. These studies suggest that sLRP1 may attenuate inflammation by modulating integrin function.  相似文献   

9.
Rat forebrain synaptosomes were extracted with Triton X-100 at 4 degrees C and the insoluble material, which is enriched in post-synaptic densities (PSDs), was subjected to sedimentation on a continuous sucrose gradient. Two pools of Triton X-100-insoluble gamma-aminobutyric acid type-A receptors (GABA(A)Rs) were identified: (i) a higher-density pool (rho = 1.10-1.15 mg/mL) of GABA(A)Rs that contains the gamma2 subunit (plus alpha and beta subunits) and that is associated to gephyrin and the GABAergic post-synaptic complex and (ii) a lower-density pool (rho = 1.06-1.09 mg/mL) of GABA(A)Rs associated to detergent-resistant membranes (DRMs) that contain alpha and beta subunits but not the gamma2 subunit. Some of these GABA(A)Rs contain the delta subunit. Two pools of GABA(A)Rs insoluble in Triton X-100 at 4 degrees C were also identified in cultured hippocampal neurons: (i) a GABA(A)R pool that forms clusters that co-localize with gephyrin and remains Triton X-100-insoluble after cholesterol depletion and (ii) a GABA(A)R pool that is diffusely distributed at the neuronal surface that can be induced to form GABA(A)R clusters by capping with an anti-alpha1 GABA(A)R subunit antibody and that becomes solubilized in Triton X-100 at 4 degrees C after cholesterol depletion. Thus, there is a pool of GABA(A)Rs associated to lipid rafts that is non-synaptic and that has a subunit composition different from that of the synaptic GABA(A)Rs. Some of the lipid raft-associated GABA(A)Rs might be involved in tonic inhibition.  相似文献   

10.
We show that the yeast TFIID (yTFIID) component yTAF(II)47 contains a histone fold domain (HFD) with homology to that previously described for hTAF(II)135. Complementation in vivo indicates that the yTAF(II)47 HFD is necessary and sufficient for vegetative growth. Mutation of highly conserved residues in the alpha1 helix of the yTAF(II)47 HFD results in a temperature-sensitive phenotype which can be suppressed by overexpression of yTAF(II)25, as well as by yTAF(II)40, yTAF(II)19, and yTAF(II)60. In yeast two-hybrid and bacterial coexpression assays, the yTAF(II)47 HFD selectively heterodimerizes with yTAF(II)25, which we show contains an HFD with homology to the hTAF(II)28 family We additionally demonstrate that yTAF(II)65 contains a functional HFD which also selectively heterodimerizes with yTAF(II)25. These results reveal the existence of two novel histone-like pairs in yTFIID. The physical and genetic interactions described here show that the histone-like yTAF(II)s are organized in at least two substructures within TFIID rather than in a single octamer-like structure as previously suggested. Furthermore, our results indicate that ySPT7 has an HFD homologous to that of yTAF(II)47 which selectively heterodimerizes with yTAF(II)25, defining a novel histone-like pair in the SAGA complex.  相似文献   

11.
Aerobic growth of Streptococcus pneumoniae results in production of amounts of hydrogen peroxide (H(2)O(2)) that may exceed 1 mM in the surrounding media. H(2)O(2) production by S. pneumoniae has been shown to kill or inhibit the growth of other respiratory tract flora, as well as to have cytotoxic effects on host cells and tissue. The mechanisms allowing S. pneumoniae, a catalase-deficient species, to survive endogenously generated concentrations of H(2)O(2) that are sufficient to kill other bacterial species is unknown. In the present study, pyruvate oxidase (SpxB), the enzyme responsible for endogenous H(2)O(2) production, was required for survival during exposure to high levels (20 mM) of exogenously added H(2)O(2). Pretreatment with H(2)O(2) did not increase H(2)O(2) resistance in the mutant, suggesting that SpxB activity itself is required, rather than an H(2)O(2)-inducible pathway. SpxB mutants synthesized 85% less acetyl-phosphate, a potential source of ATP. During H(2)O(2) exposure, ATP levels decreased more rapidly in spxB mutants than in wild-type cells, suggesting that the increased killing of spxB mutants was due to more rapid ATP depletion. Together, these data support the hypothesis that S. pneumoniae SpxB contributes to an H(2)O(2)-resistant energy source that maintains viability during oxidative stress. Thus, SpxB is required for resistance to the toxic by-product of its own activity. Although H(2)O(2)-dependent hydroxyl radical production and the intracellular concentration of free iron were similar to that of Escherichia coli, killing by H(2)O(2) was unaffected by iron chelators, suggesting that S. pneumoniae has a novel mechanism to avoid the toxic effects of the Fenton reaction.  相似文献   

12.
Protein kinase Cdelta (PKCdelta) is unusual among AGC kinases in that it does not require activation loop (Thr(505)) phosphorylation for catalytic competence. Nevertheless, Thr(505) phosphorylation has been implicated as a mechanism that influences PKCdelta activity. This study examines the controls of PKCdelta-Thr(505) phosphorylation in cardiomyocytes. We implicate phosphoinositide-dependent kinase-1 and PKCdelta autophosphorylation in the "priming" maturational PKCdelta-Thr(505) phosphorylation that accompanies de novo enzyme synthesis. In contrast, we show that PKCdelta-Thr(505) phosphorylation dynamically increases in cardiomyocytes treated with phorbol 12-myristate 13-acetate or the alpha(1)-adrenergic receptor agonist norepinephrine via a mechanism that requires novel PKC isoform activity and not phosphoinositide-dependent kinase-1. We used a PKCepsilon overexpression strategy as an initial approach to discriminate two possible novel PKC mechanisms, namely PKCdelta-Thr(505) autophosphorylation and PKCdelta-Thr(505) phosphorylation in trans by PKCepsilon. Our studies show that adenovirus-mediated PKCepsilon overexpression leads to an increase in PKCdelta-Thr(505) phosphorylation. However, this cannot be attributed to an effect of PKCepsilon to function as a direct PKCdelta-Thr(505) kinase, since the PKCepsilon-dependent increase in PKCdelta-Thr(505) phosphorylation is accompanied by (and dependent upon) increased PKCdelta phosphorylation at Tyr(311) and Tyr(332). Further studies implicate Src in this mechanism, showing that 1) PKCepsilon overexpression increases PKCdelta-Thr(505) phosphorylation in cardiomyocytes and Src(+) cells but not in SYF cells (that lack Src, Yes, and Fyn and exhibit a defect in PKCdelta-Tyr(311)/Tyr(332) phosphorylation), and 2) in vitro PKCdelta-Thr(505) autophosphorylation is augmented in assays performed with Src (which promotes PKCdelta-Tyr(311)/Tyr(332) phosphorylation). Collectively, these results identify a novel PKCdelta-Thr(505) autophosphorylation mechanism that is triggered by PKCepsilon overexpression and involves Src-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation.  相似文献   

13.
14.
The small-diameter (<25 μm) and large-diameter (>30 μm) sensory neurons of the dorsal root ganglion (DRG) express distinct combinations of tetrodotoxin sensitive and tetrodotoxin-resistant Na(+) channels that underlie the unique electrical properties of these neurons. In vivo, these Na(+) channels are formed as complexes of pore-forming α and auxiliary β subunits. The goal of this study was to investigate the expression of β subunits in DRG sensory neurons. Quantitative single-cell RT-PCR revealed that β subunit mRNA is differentially expressed in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons. This raises the possibility that β subunit availability and Na(+) channel composition and functional regulation may differ in these subpopulations of sensory neurons. To further explore these possibilities, we quantitatively compared the mRNA expression of the β subunit with that of Na(v)1.7, a TTX-sensitive Na(+) channel widely expressed in both small and large DRG neurons. Na(v)1.7 and β subunit mRNAs were significantly correlated in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons, indicating that these subunits are coexpressed in the same populations. Co-immunoprecipitation and immunocytochemistry indicated that Na(v)1.7 formed stable complexes with the β(1)-β(3) subunits in vivo and that Na(v)1.7 and β(3) co-localized within the plasma membranes of small DRG neurons. Heterologous expression studies showed that β(3) induced a hyperpolarizing shift in Na(v)1.7 activation, whereas β(1) produced a depolarizing shift in inactivation and faster recovery. The data indicate that β(3) and β(1) subunits are preferentially expressed in small and large DRG neurons, respectively, and that these auxiliary subunits differentially regulate the gating properties of Na(v)1.7 channels.  相似文献   

15.
Inhibition of oxidative stress has been reported to be involved in the cardioprotective effects of hydrogen sulfide (H(2)S) during ischemia/reperfusion (I/R). However, the mechanism whereby H(2)S regulates the level of cardiac reactive oxygen species (ROS) during I/R remains unclear. Therefore, we investigated the effects of H(2)S on pathways that generate and scavenge ROS. Our results show that pretreating rat neonatal cardiomyocytes with NaHS, a H(2)S donor, reduced the levels of ROS during the hypoxia/reoxygenation (H/R) condition. We found that H(2)S inhibited mitochondrial complex IV activity and increased the activities of superoxide dismutases (SODs), including Mn-SOD and CuZn-SOD. Further studies indicated that H(2)S up-regulated the expression of Mn-SOD but not CuZn-SOD. Using a cell-free system, we showed that H(2)S activates CuZn-SOD. An isothermal titration calorimetry (ITC) analysis indicated that H(2)S directly interacts with CuZn-SOD. Taken together, H(2)S inhibits mitochondrial complex IV and activates SOD to decrease the levels of ROS in cardiomyocytes during I/R.  相似文献   

16.
Recent reports have shown that several heterotrimeric protein-coupled receptors that signal through Galpha(q) can induce Rho-dependent responses, but the pathways that mediate the interaction between Galpha(q) and Rho have not yet been identified. In this report we present evidence that Galpha(q) expressed in COS-7 cells coprecipitates with the Rho guanine nucleotide exchange factor (GEF) Lbc. Furthermore, Galpha(q) expression enhances Rho-dependent responses. Coexpressed Galpha(q) and Lbc have a synergistic effect on the Rho-dependent rounding of 1321N1 astrocytoma cells. In addition, serum response factor-dependent gene expression, as assessed by the SRE.L reporter gene, is synergistically activated by Galpha(q) and Rho GEFs. The synergistic effect of Galpha(q) on this response is inhibited by C3 exoenzyme and requires phospholipase C activation. Surprisingly, expression of Galpha(q), in contrast to that of Galpha(12) and Galpha(13), does not increase the amount of activated Rho. We also observe that Galpha(q) enhances SRE.L stimulation by activated Rho, indicating that the effect of Galpha(q) occurs downstream of Rho activation. Thus, Galpha(q) interacts physically and/or functionally with Rho GEFs; however this does not appear to lead to or result from increased activation of Rho. We suggest that Galpha(q)-generated signals enhance responses downstream of Rho activation.  相似文献   

17.
TFIID is a multiprotein complex composed of the TATA binding protein (TBP) and TBP-associated factors (TAF(II)s). The binding of TFIID to the promoter is the first step of RNA polymerase II preinitiation complex assembly on protein-coding genes. Yeast (y) and human (h) TFIID complexes contain 10 to 13 TAF(II)s. Biochemical studies suggested that the Drosophila (d) TFIID complexes contain only eight TAF(II)s, leaving a number of yeast and human TAF(II)s (e.g., hTAF(II)55, hTAF(II)30, and hTAF(II)18) without known Drosophila homologues. We demonstrate that Drosophila has not one but two hTAF(II)30 homologues, dTAF(II)16 and dTAF(II)24, which are encoded by two adjacent genes. These two genes are localized in a head-to-head orientation, and their 5' extremities overlap. We show that these novel dTAF(II)s are expressed and that they are both associated with TBP and other bona fide dTAF(II)s in dTFIID complexes. dTAF(II)24, but not dTAF(II)16, was also found to be associated with the histone acetyltransferase (HAT) dGCN5. Thus, dTAF(II)16 and dTAF(II)24 are functional homologues of hTAF(II)30, and this is the first demonstration that a TAF(II)-GCN5-HAT complex exists in Drosophila. The two dTAF(II)s are differentially expressed during embryogenesis and can be detected in both nuclei and cytoplasm of the cells. These results together indicate that dTAF(II)16 and dTAF(II)24 may have similar but not identical functions.  相似文献   

18.
A procedure for detecting proteins that contain H(2)O(2)-sensitive cysteine (or selenocysteine) residues was developed as a means with which to study protein oxidation by H(2)O(2) in cells. The procedure is based on the facts that H(2)O(2) and biotin-conjugated iodoacetamide (BIAM) selectively and competitively react with cysteine residues that exhibit a low pK(a), and that the decrease in the labeling of cell lysate proteins with BIAM caused by prior exposure of cells to H(2)O(2) or to an agent that induces H(2)O(2) production can be monitored by streptavidin blot analysis. This procedure was applied to rat pheochromocytoma PC12 cells directly treated with H(2)O(2), mouse hippocampal HT22 cells in which H(2)O(2) production was induced by glutamate, and human erythroleukemia K562 cells in which H(2)O(2) production was induced by phorbol myristate acetate. It revealed that several cell proteins contain cysteine or selenocysteine residues that are selectively oxidized by H(2)O(2). Three of these H(2)O(2)-sensitive proteins were identified as a member of the protein disulfide isomerase family, thioredoxin reductase, and creatine kinase, all of which were previously known to contain at least one reactive cysteine or selenocysteine at their catalytic sites. This procedure should thus prove useful for the identification of proteins that are oxidized by H(2)O(2) generated in response to a variety of extracellular agents.  相似文献   

19.
Weber TP  Widger WR  Kohn H 《Biochemistry》2003,42(30):9121-9126
Rho is an enzyme that is essential for the growth and survival of Escherichia coli, and bicyclomycin (1) is its only known selective inhibitor. We show that metal (Cd(2+), Ni(2+), and Zn(2+)) complexes of 1,4-dithio-2,3-dihydroxybutanes (2) serve as effective and potent rho inhibitors with I(50) values that can exceed that of 1. Maximal inhibition for ZnCl(2) and L-dithiothreitol (2a) corresponded to Zn(2):L-DTT stoichiometry. The I(50) value for the 2:1 Zn-L-DTT solution was 20 microM, which made it 3 times more potent than 1 (I(50) = 60 microM). Kinetic studies showed that a Zn-L-DTT solution functioned as a noncompetitive inhibitor with respect to ATP in the rho poly(C)-dependent ATPase assay and as a competitive inhibitor with respect to ribo(C)(10) in the poly(dC).ribo(C)(10)-stimulated ATPase assay. These findings demonstrated that both 1 and a Zn-L-DTT solution disrupted rho-mediated ATP hydrolysis but that they inhibit using different mechanisms. Substitution of L-DTT with 1,2-ethanedithiol in ZnCl(2) solutions led to a comparable loss of rho poly(C)-dependent ATPase activity, indicating that other metal chelates can serve as efficient inhibitors. The site and pathway of rho inhibition by the putative metal-1,4-dithio-2,3-dihydroxybutane chelates are discussed in light of the current data.  相似文献   

20.
Yoshikawa DM  Hatwar M  Smrcka AV 《Biochemistry》2000,39(37):11340-11347
When the beta(5) (short form) and gamma(2) subunits of heterotrimeric G proteins were expressed with hexahistidine-tagged alpha(i) in insect cells, a heterotrimeric complex was formed that bound to a Ni-NTA-agarose affinity matrix. Binding to the Ni-NTA-agarose column was dependent on expression of hexahistidine-tagged alpha(i) and resulted in purification of beta(5)gamma(2) to near homogeneity. Subsequent anion-exchange chromatography of beta(5)gamma(2) resulted in resolution of beta(5) from gamma(2) and further purification of beta(5). The purified beta(5) eluted as a monomer from a size-exclusion column and was resistant to trypsin digestion suggesting that it was stably folded in the absence of gamma. beta(5) monomer could be assembled with partially purified hexahistidine-tagged gamma(2) in vitro to form a functional dimer that could selectively activate PLC beta2 but not PLC beta3. alpha(o)-GDP inhibited activation of PLC beta2 by beta(5)gamma(2) supporting the idea that beta(5)gamma(2) can bind to alpha(o). beta(5) monomer and beta(5)gamma(2) only supported a small degree of ADP ribosylation of alpha(i) by pertussis toxin (PTX), but beta(5) monomer was able to compete for beta(1)gamma(2) binding to alpha(i) and alpha(o) to inhibit PTX-catalyzed ADP ribosylation. These data indicate that beta(5) functionally interacts with PTX-sensitive GDP alpha subunits and that beta(5) subunits can be assembled with gamma subunits in vitro to reconstitute activity and also support the idea that there are determinants on beta subunits that are selective for even very closely related effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号