首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 775 毫秒
1.
Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of glycoproteins, collagen, and proteoglycans. Proteoglycans have been suggested to play an important functional role in tissue differentiation. However, an understanding of how the extracellular matrix affects skeletal muscle development and function is largely unknown. In the avian genetic muscle weakness, low score normal (LSN), a late embryonic increase in the expression of decorin is followed by a subsequent increase in collagen crosslinking. The sarcomere organization, collagen fibril diameter and organization were investigated using transmission electron microscopy. Measurements were made at 20 days of embryonic development and 6 weeks posthatch. These studies showed changes in sarcomere organization and deterioration of muscle fibril structure in the LSN pectoral muscle. In vitro satellite cell cultures were developed and assayed for mitochondrial activity, and protein synthesis and degradation. In these analyses, mitochondrial activity from LSN satellite cells was significantly higher than those from normal pectoral muscle satellite cells. Protein synthesis rates between the normal and LSN satellite cell-derived myotubes were similar, but protein degradation rates were higher in the LSN cultures. Based on the reported functions of decorin as a regulator of cell proliferation and collagen fibril organization, it is possible that the late embryonic increase in decorin may be influencing the alterations in LSN sarcomere and collagen organization.  相似文献   

2.
Velleman SG  McFarland DC 《Cytobios》1999,100(394):101-110
Expression, and temporal and spatial distribution of type I collagen were investigated in chicken satellite cell cultures during differentiation. There was no difference in the relative amounts of type I collagen after treatment with basic fibroblast growth factor (FGF), insulin-like growth factor-I (IGF-I), or transforming growth factor beta 1 (TGF-beta 1). However, myotube morphology was influenced by the presence of the growth factors. The temporal and spatial distribution of type I collagen was also modified. Control cultures maintained a predominant distribution of type I collagen surrounding the cellular area until approximately 48 h after the initiation of fusion whereas cultures with FGF or IGF-I maintained a cellular localization of type I collagen throughout the fusion process. TGF-beta 1 resulted in the early formation of an extracellular network of type I collagen preceding control cultures by approximately 24 h. These results suggest that type I collagen expression but not localization is independent of satellite cell proliferation and differentiation.  相似文献   

3.
Because of its mechanical function, skeletal muscle is heavily influenced by the composition of its extracellular matrix (ECM). Fibrosis generated by chronic damage, such as occurs in muscular dystrophies, is thus particularly disastrous in this tissue. Here, we examined the interrelationship between the muscle satellite cell and the production of collagen type I, a major component of fibrotic ECM, by using both C2C12, a satellite cell-derived cell line, and primary muscle satellite cells. In C2C12 cells, we found that expression of collagen type I mRNA decreases substantially during skeletal muscle differentiation. On a single-cell level, collagen type I and myogenin became mutually exclusive after 3 days in differentiation medium, whereas addition of collagen markedly suppressed differentiation of C2C12 cells. Primary cultures of satellite cells associated with isolated single fibers of the young (4 wk old) mdx dystrophic mouse and of C57BL/10ScSn wild-type controls expressed collagen type I and type III mRNA and protein. This pattern persisted in wild-type mice at all ages. But, curiously, in older (18-mo-old) mdx mice, although the myogenic cells continued to express type III collagen, type I expression became restricted to nonmyogenic cells. These cells typically constituted part of a cellular sheet surrounding the old mdx fibers. This combination of features strongly suggests that the progression to fibrosis in dystrophic muscle involves changes in the mechanisms controlling matrix production, which generates positive feedback that results in a reprogramming of myoblasts to a profibrotic function. collagen type I; myogenin; muscle single fibers; Duchenne muscular dystrophy  相似文献   

4.
In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.  相似文献   

5.
The low score normal (LSN) chicken exhibits a genetic muscle weakness and altered in vitro myogenesis compared to the normal White Leghorn chicken. The ventricular myosin heavy chain isoform has been reported to be the initial muscle-specific contractile protein expressed during myogenesis. The goals of this study were to determine whether altered myogenesis of the LSN satellite cells in culture was accompanied by delayed ventricular myosin heavy chain expression and to further characterize the altered myogenic events exhibited by the LSN chicken. Immunocytochemical and ELISA analyses were employed to document the temporal expression of the ventricular myosin heavy chain during LSN chicken myogenesis. Satellite cells derived from the LSN chicken pectoralis major exhibited lower (P 相似文献   

6.
Summary The normal human mammary gland undergoes a well defined sequence of histological changes in both epithelial and stromal compartments during the menstrual cycle. Studies in vitro have suggested that the extracellular matrix surrounding the individual cells plays a central role in modulating a wide variety of cellular events, including proliferation, differentiation and gene expression. We therefore investigated the distribution of a number of extracellular matrix molecules in the normal breast during the menstrual cycle. By use of indirect immunofluorescence, with specific antibodies, we demonstrated that laminin, heparan sulphate proteoglycan, type IV collagen, type V collagen, chondroitin sulphate and fibronectin undergo changes in distribution during the menstrual cycle, whereas collagen types I, III, VI and VII remain unchanged. These changes were most marked in the basement membrane, sub-basement membrane zone and delimiting layer of fibroblasts surrounding the ductules where basement membrane markers such as laminin, heparan sulphate proteoglycan, and type IV and V collagens appear greatly reduced during the mid-cycle period (days 8 to 22). These results suggest that some extracellular matrix molecules may act as medittors in the hormonal control of the mammary gland, whereas others may have a predominantly structural role.  相似文献   

7.
8.
The basal lamina protein, laminin, has been shown to promote migration and proliferation of cultured skeletal myoblasts, resulting in increased myotube formation. However, skeletal myotubes adhere poorly to a laminin substrate, and long-term cultures of skeletal myotubes on laminin have not been achieved. We have found that cultured satellite cells from bupivacaine-damaged rat skeletal muscle actively proliferate and differentiate on a diluted Matrigel substrate composed of laminin, type IV collagen, heparan sulfate proteoglycan, and entactin. Myotubes cultured on diluted Matrigel are contractile and have never been observed to detach from the culture dish; rather, myotubes generally atrophy after 2-3 weeks in culture. Antibodies directed against the various protein components of Matrigel were used to determine the role of each component in enhancing muscle differentiation. Anti-laminin impaired satellite cell adhesion, whereas antibodies against either type IV collagen or heparan sulfate proteoglycan had no effect. Anti-entactin did not inhibit attachment, proliferation, or fusion of cultured satellite cells; however, myotubes exposed to anti-entactin failed to adhere to the culture dish after spontaneous myotube contractions began. We conclude that entactin is responsible for long-term maintenance and maturation of contractile skeletal myotubes on a diluted Matrigel substrate. This is the first study to assign a biological function for entactin in myogenesis.  相似文献   

9.
In adult skeletal muscle, brain-derived neurotrophic factor (BDNF) is expressed in myogenic progenitors known as satellite cells. To functionally address the role of BDNF in muscle satellite cells and regeneration in vivo, we generated a mouse in which BDNF is specifically depleted from skeletal muscle cells. For comparative purposes, and to determine the specific role of muscle-derived BDNF, we also examined muscles of the complete BDNF−/− mouse. In both models, expression of the satellite cell marker Pax7 was significantly decreased. Furthermore, proliferation and differentiation of primary myoblasts was abnormal, exhibiting delayed induction of several markers of differentiation as well as decreased myotube size. Treatment with exogenous BDNF protein was sufficient to rescue normal gene expression and myotube size. Because satellite cells are responsible for postnatal growth and repair of skeletal muscle, we next examined whether regenerative capacity was compromised. After injury, BDNF-depleted muscle showed delayed expression of several molecular markers of regeneration, as well as delayed appearance of newly regenerated fibers. Recovery of wild-type BDNF levels was sufficient to restore normal regeneration. Together, these findings suggest that BDNF plays an important role in regulating satellite cell function and regeneration in vivo, particularly during early stages.  相似文献   

10.
Secreted Frizzled-related proteins (Sfrps) are extracellular regulators of Wnt signalling and play important roles in developmental and oncogenic processes. They are known to be upregulated in regenerating muscle and in myoblast cultures but their function is unknown. Here, we show that the addition of recombinant Sfrp1 or Sfrp2 to C2C12 cell line cultures or to primary cultures of satellite cells results in the inhibition of myotube formation with no significant effect on the cell cycle or apoptosis. Even though at confluence, treated and untreated cultures are identical in appearance, analyses have shown that, for maximum effect, the cells have to be treated while they are proliferating. Furthermore, removal of Sfrp from the culture medium during differentiation restores normal myotube formation. We conclude that Sfrp1 and Sfrp2 act to prevent myoblasts from entering the terminal differentiation process. S. Descamps and J. Levin contributed equally to this work.  相似文献   

11.
12.
G S Stein  J B Lian  T A Owen 《FASEB journal》1990,4(13):3111-3123
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation can be examined in primary diploid cultures of fetal calvarial-derived osteoblasts by the combination of molecular, biochemical, histochemical, and ultrastructural approaches. Modifications in gene expression define a developmental sequence that has 1) three principal periods: proliferation, extracellular matrix maturation, and mineralization; and 2) two restriction points to which the cells can progress but cannot pass without further signals. The first restriction point is when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle and cell growth regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which an enhanced expression of alkaline phosphatase occurs immediately after the proliferative period, and later an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited; and 3) enhanced levels of expression of the osteoblast markers when collagen deposition is promoted, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and development of the osteoblast phenotype. The loss of stringent growth control in transformed osteoblasts and in osteosarcoma cells is accompanied by a deregulation of the tightly coupled relationship between proliferation and progressive expression of genes associated with bone cell differentiation.  相似文献   

13.
During liver fibrosis hepatic stellate cells become activated, transforming into proliferative myofibroblastic cells expressing type I collagen and alpha-smooth muscle actin. They become the major producers of the fibrotic neomatrix in injured liver. This study examines if activated stellate cells are a committed phenotype, or whether they can become deactivated by extracellular matrix. Stellate cells isolated from normal rat liver proliferated and expressed mRNA for activation markers, alpha-smooth muscle actin, type I procollagen and tissue inhibitor of metalloproteinases-1 following 5-7 day culture on plastic, but culture on Matrigel suppressed proliferation and mRNA expression. Activated stellate cells were recovered from plastic by trypsinisation and replated onto plastic, type I collagen films or Matrigel. Cells replated on plastic and type I collagen films proliferated and remained morphologically myofibroblastic, expressing alpha-smooth muscle actin and type I procollagen. However, activated cells replated on Matrigel showed <30% of the proliferative rate of these cells, and this was associated with reduced cellular expression of proliferating cell nuclear antigen and phosphorylation of mitogen-activated protein kinase in response to serum. Activated HSC replated on Matrigel for 3-7 days progressively reduced their expression of mRNA for type I procollagen and alpha-smooth muscle actin and both became undetectable after 7 days. We conclude that basement membrane-like matrix induces deactivation of stellate cells. Deactivation represents an important potential mechanism mediating recovery from liver fibrosis in vivo where type I collagen is removed from the liver and stellate cells might re-acquire contact with their normal basement membrane-like pericellular matrix.  相似文献   

14.
Conditions for isolation and culture of porcine myogenic satellite cells.   总被引:5,自引:0,他引:5  
Myogenic satellite cells were isolated from semimembranosus muscles of 4-8 week-old pigs. Muscles were ground and incubated in 0.8 mg/ml Pronase solution for 40 min at 37 degrees C. Following enzymatic digestion, cells were separated from muscle debris by differential centrifugation and sequential filtering through 500 and 53 microns nylon mesh. Primary cultures grown in 16 mm diameter cell culture wells were used to evaluate five sera, media, and substrata for their ability to promote satellite cell proliferation and differentiation. Porcine satellite cell proliferation and myotube formation were optimized in cultures grown on gelatin-coated substratum in the presence of Minimum Essential Medium-alpha supplemented with 10% fetal bovine serum (FBS) (P less than 0.01). Maximum fusion was induced by 48 hr exposure to 2% FBS, horse serum, or lamb serum. These data 1) document the first evidence that myogenic satellite cells can be isolated from porcine skeletal muscle, and 2) identify culture conditions which optimize proliferation and myotube formation of porcine satellite cells.  相似文献   

15.
D D Johnson  R Wilcox  B Wenger 《In vitro》1983,19(9):723-729
Satellite cells, liberated from pectoral muscle of juvenile dystrophic chickens by sequential treatment with collagenase, hyaluronidase, and trypsin and preplated to remove fibroblasts and cultured on gelatin proliferated rapidly, fused and formed confluent muscle cultures within 6 d in vitro with minimal contamination by fibroblasts. When identical isolation and culturing techniques were applied to muscle from age-matched normal chickens proliferation and differentiation were slower, contamination with fibroblasts was much greater, and only a small number of myotubes were formed. After injection of the myotoxic anesthetic marcaine into normal pectoral muscle for 5 consecutive days, myotube formation was accelerated in satellite cell cultures, but the rate of differentiation was not as rapid as that occurring in cells from dystrophic muscle.  相似文献   

16.
17.
Leiomyoma is a benign smooth muscle tumor of the uterus that affects many women in active reproductive life. It is composed by bundles of smooth muscle cells surrounded by extracellular matrix. We have recently shown that the glycosylation of extracellular matrix proteoglycans is modified in leiomyoma: increased amounts of galactosaminoglycans with structural modifications are present. The data here presented show that decorin is present in both normal myometrium and leiomyoma but tumoral decorin is glycosylated with longer galactosaminoglycan side chains. Furthermore, these chains contain a higher ratio D-glucuronate/L-iduronate, as compared to normal tissue. To determine if these changes in proteoglycan glycosylation correlates with modifications in the extracellular matrix organization, we compared the general structural architecture of leiomyoma to normal myometrium. By histochemical and immunofluorescence methods, we found a reorganization of muscle fibers and extracellular matrix, with changes in the distribution of glycoproteins, proteoglycans, and collagen. Thin reticular fibers, possibly composed by types I and III collagen, were replaced by thick fibers, possibly richer in type I collagen. Type I collagen colocalized with decorin both in leiomyoma and normal myometrium, in contrast to type IV collagen that did not. The relative amount of decorin was increased and the distribution of decorin and collagen was totally modified in the tumor, as compared to the normal myometrium. These findings reveal that not only decorin structure is modified in leiomyoma but also the tissue architecture changed, especially concerning extracellular matrix.  相似文献   

18.
The human salivary gland (HSG) epithelial cell line can differentiate when cultured on extracellular matrix preparations. We previously identified >30 genes upregulated by adhesion of HSG cells to extracellular matrix. In the current studies, we examined the role of one of these genes, the polyamine pathway biosynthetic enzyme S-adenosylmethionine decarboxylase (SAM-DC) and the related enzyme, ornithine decarboxylase (ODC), on HSG cell differentiation during culture on extracellular matrix. HSG cells cultured on fibronectin-, collagen I gel-, and Matrigel-coated substrates for 12-24 h upregulated SAM-DC and ODC mRNA expression and enzyme activity compared to cells cultured on non-precoated substrates. After 3-5 days, HSG cells grown on Matrigel- or collagen I gel-coated substrates acquired a differentiated phenotype: the cells showed changes in culture morphology and increased expression of salivary gland differentiation markers (vimentin, SN-cystatin, and alpha-amylase). Further, culturing the cells on substrates precoated with an anti-beta1-integrin-antibody promoted differentiation-like changes. HSG cells cultured on collagen I- or Matrigel-coated substrates rapidly entered the cell cycle but showed decreased cell proliferation at longer times. In contrast, cell proliferation was enhanced on fibronectin-coated substrates compared to cells on non-precoated substrates. Treatment with the polyamine synthesis inhibitors, difluoromethylornithine (DFMO), and methylglyoxal bis-(guanylhydrazone) (MGBG), inhibited cell proliferation and delayed (3)H-thymidine incorporation in HSG cells cultured on all of the substrates. Further, inclusion of DFMO and MGBG inhibited or delayed acquisition of the differentiated phenotype in HSG cells cultured on Matrigel- or collagen I gel-coated substrates. This suggests that the adhesion-dependent expression of SAM-DC and ODC contributes to extracellular matrix-dependent HSG cell differentiation.  相似文献   

19.
ATP is well known for its role as an intracellular energy source. However, there is increasing awareness of its role as an extracellular messenger molecule (Burnstock, 1997). Although evidence for the presence of receptors for extracellular ATP on skeletal myoblasts was first published in 1983 (Kolb and Wakelam), their physiological function has remained unclear. In this paper we used primary cultures of rat skeletal muscle satellite cells to investigate the role of purinergic signaling in muscle formation. Using immunocytochemistry, RT-PCR, and electrophysiology, we demonstrate that the ionotropic P2X5 receptor is present on satellite cells and that activation of a P2X receptor inhibits proliferation, stimulates expression of markers of muscle cell differentiation, including myogenin, p21, and myosin heavy chain, and increases the rate of myotube formation. Furthermore, we demonstrate that ATP application results in a significant and rapid increase in the phosphorylation of MAPKs, particularly p38, and that inhibition of p38 activity can prevent the effect of ATP on cell number. These results not only demonstrate the existence of a novel regulator of skeletal muscle differentiation, namely ATP, but also a new role for ionotropic P2X receptors in the control of cell fate.  相似文献   

20.
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation was examined in primary diploid cultures of fetal calvarial derived osteoblasts by the combined use of autoradiography, histochemistry, biochemistry, and mRNA assays of osteoblast cell growth and phenotypic genes. Modifications in gene expression define a developmental sequence that has 1) three principle periods--proliferation, extracellular matrix maturation, and mineralization--and 2) two restriction points to which the cells can progress but cannot pass without further signals--the first when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle- and cell growth-regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which there is an enhanced expression of alkaline phosphatase immediately following the proliferative period, and later, an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited by hydroxyurea; and 3) enhanced levels of expression of the osteoblast markers as a function of ascorbic acid-induced collagen deposition, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and the development of the osteoblast phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号