首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
建立了两步连续离子交换制备色谱分离、纯化聚乙二醇与重组人粒细胞集落刺激因子 (Recombinanthumangranulocytestimulatingfactor,rhG_CSF)偶联物的方法。首先用阳离子交换色谱将偶联蛋白质和非偶联蛋白质分开 ,然后使用阴离子交换色谱去除过量的游离聚乙二醇杂质 ,并分离纯化偶联蛋白异构体分别得到单聚乙二醇化、双聚乙二醇化和三聚乙二醇化的rhG-CSF。它们经十二烷基磺酸钠_聚丙烯酰胺凝胶电泳 (SDS-PAGE)分析均为单带。采用基质辅助激光解吸离子化-飞行时间质谱(MALDI-TOF)分析三种偶联蛋白质的分子量 ,分别为 23.8kD、28.6kD、33.8kD。用噻唑蓝 (MTT)比色法 ,以粒细胞集落刺激因子的依赖细胞株NFS_6 0为靶细胞 ,测定重组人粒细胞集落刺激因子及其与聚乙二醇的偶联物的体外细胞生物学活性 ,单聚乙二醇化、双聚乙二醇化和三聚乙二醇化的rhG_CSF体外活性保留率分别为 92 %、75 %、4 3%。  相似文献   

2.
The individual positional isomers from the mono-PEGylated recombinant human granulocyte colony-stimulating factor (rhG-CSF) were successfully isolated with additional strong cation exchange chromatography using Source 15S. The three isolated individual positional isomers were found to be homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), analytical size exclusion high-performance liquid chromatography (SE-HPLC), and analytical cation exchange HPLC (CIE-HPLC) and were also characterized with respect to site of PEGylation by enzymatic digestion with endoproteinase Lys-C and N-terminal sequencing. In addition, in vitro biological activity was determined by cell proliferation assay. It was determined that the three isolated individual positional isomers were PEGylated at Lys35, Met(N-terminal), and Lys17 of the rhG-CSF molecule with a 23-kDa trimer-structured methoxy polyethylene glycol N-hydroxysuccinimidyl functional group (mPEG-NHS). All individual positional isomers (Lys35-PEGylated rhG-CSF, Met(N-terminal)-PEGylated rhG-CSF, and Lys17-PEGylated rhG-CSF) retained in vitro biological activity and were found to be 18.5%, 37.6%, and 7.1%, respectively, compared with the rhG-CSF molecule. The significantly different in vitro biological activities observed in the individual positional isomers could be presumably due to interference of receptor binding or active sites on the rhG-CSF molecule. In conclusion, the individual positional isomers isolated from the mono-PEGylated rhG-CSF were well characterized with respect to the site of PEGylation involving Lys35, Met(N-terminal), and Lys17. This characterization of the individual positional isomers would be critical to provide a basis for establishing consistency in the manufacturing process.  相似文献   

3.
聚乙二醇单修饰重组人粒细胞集落刺激因子的研究   总被引:1,自引:0,他引:1  
制备单修饰的PEG蛋白偶联物,对获得重复性好的修饰产品,减少后续分离步骤具有重要的意义。用N-羟基琥珀酰亚胺活化法对单甲氧基聚乙二醇 (mPEG,分子量20000) 进行活化,红外光谱分析, 并考察了其水解动力学性质。对重组人粒细胞集落刺激因子(rhG-CSF)进行化学修饰,通过正交试验结合SDS-PAGE电泳检测建立了单条PEG链修饰rhG-CSF的条件,单修饰PEG-rhG-CSF的收率为90%。离子交换层析对修饰产物进行分离纯化,高效凝胶过滤色谱(SEC-HPLC)检测纯度达到97%。  相似文献   

4.
Proteins that are modified by chemical conjugation require at least two separate purification processes. First the bulk protein is purified, and then after chemical conjugation, a second purification process is required to obtain the modified protein. In an effort to develop new enabling technologies to integrate bioprocessing and protein modification, we describe the use of disulfide‐bridging conjugation to conduct PEGylation during protein refolding. Preliminary experiments using a PEG‐mono‐sulfone reagent with partially unfolded leptin and unfolded RNAse T1 indicated that the cysteine thiols underwent disulfide‐bridging conjugation to give the PEGylated proteins. Interferon‐β1b (IFN‐β1b) was then expressed in E.coli as inclusion bodies and found to undergo disulfide bridging‐conjugation during refolding. The PEG‐IFN‐β1b was isolated by ion‐exchange chromatography and displayed in vitro biological activity. In the absence of the PEGylation reagent, IFN‐β1b refolding was less efficient and yielded protein aggregates. No PEGylation was observed if the cysteines on IFN‐β1b were first modified with iodoacetamide prior to refolding. Our results demonstrate that the simultaneous refolding and disulfide bridging PEGylation of proteins could be a useful strategy in the development of affordable modified protein therapeutics.  相似文献   

5.
New radiopharmaceuticals are possible using site-specific conjugation of small tumor binding proteins and poly(ethylene glycol) (PEG) scaffolds to provide modular multivalent, homo- or heterofunctional cancer-targeting molecules having preferred molecular size, valence, and functionality. Residence time in plasma can be optimized by modification of the size, number, and charge of the protein units. However, random PEG conjugation (PEGylation) of these small molecules via amine groups has led to variations of structural conformation and binding affinity. To optimize PEGylation, scFvs have been recombinantly produced in a vector that adds an unpaired cysteine (c) near the scFv carboxy terminus (scFv-c), thus providing a specific site for thiol conjugation. To evaluate the general applicability of this unpaired cysteine for PEGylation of scFv-c, conjugation efficiency was determined for four different scFvs and several PEG molecules having thiol reactive groups. The effect of the PEG molecular format on scFv-c PEG malignant cell binding was also addressed. ScFvs produced as scFv-c and purified by anti E-TAG affinity chromatography were conjugated using PEG molecules with maleimide (Mal) or o-pyridyl disulfide (OPSS). Conjugations were performed at pH 7.0, with 2 molar excess TCEP/scFv and PEG-(Mal) or PEG-OPSS, using 5:1 (PEG/scFv). PEG-Mal conjugation efficiency was also evaluated with 1:5 (PEG/scFv). PEGylation efficiency was determined for each reaction by quantitation of the products on SDS-PAGE. ScFv-c conjugation with unifunctional maleimide PEGs resulted in PEG conjugates incorporating 30-80% of the scFv-c, but usually above 50%. Efficiency of scFv-c conjugation to both functional groups of the bifunctional PEG-(Mal)2 varied between the PEG and scFv-c molecules studied. A maximum of 45% of scFv-c protein was conjugated as PEG- (scFv-c)2 using the smallest PEG-(Mal)2 (2 kDa). No significant increase in scFv-c conjugation was observed by the use of greater than a 5 molar excess of PEG/scFv-c. Under the same conjugation conditions, PEG as OPSS yielded less than 10% PEG-scFv-c. PEG-(scFv)2 conjugates had increased binding in ELISA using malignant cell membranes, when compared with unmodified scFv-c. PEGylated-scFv binding was comparable with unmodified scFv-c. In summary, scFv-c can be PEGylated in a site-specific manner using uni- or bivalent PEG-Mal, either linear or branched. ScFv-c was most efficiently conjugated to smaller PEG-Mal molecules, with the smallest, 2 kDa PEG-Mal, usually PEGylating 60-90% of the scFv-c. ScFv-c conjugation to form PEG-(scFv-c)2 reached greatest efficiency at 45%, and its purified form demonstrated greater binding than the corresponding scFv-c.  相似文献   

6.
A liquid chromatographic method was developed to determine the modification degree of PEGylated proteins. This method effectively separated free polyethylene glycol (PEG) from other species in conjugation mixtures on a C4 reversed-phase column using water-acetonitrile gradient elution. Then the concentrations of free PEG were determined according to the integrated area under the curve of its evaporative light scattering detector (ELSD) signal, which was normalized by the PEG standard with similar molecular weights. The actual numbers of PEG attached to proteins, not those of lysines modified, were calculated. This method was performed with PEGylated arginase mixtures as an example and showed clear advantages over 2,4,6-trinitrobenzenesulfonic acid (TNBS) assays.  相似文献   

7.
The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.  相似文献   

8.
Hu T  Li D  Manjula BN  Acharya SA 《Biochemistry》2008,47(41):10981-10990
The PEGylated hemoglobin (Hb) has been evaluated as a potential blood substitute. In an attempt to understand the autoxidation of the PEGylated Hb, we have studied the autoxidation of the PEGylated Hb site-specifically modified at Cys-93(beta) or at Val-1(beta). PEGylation of Hb at Cys-93(beta) perturbed the heme environment and increased the autoxidation rate of Hb, which is at a higher level than that caused by PEGylation at Val-1(beta). The perturbation of the heme environment of Hb is attributed to the maleimide modification at Cys-93(beta) and not due to conjugation of the PEG chains. However, the PEG chains enhance the autoxidation and the H 2O 2 mediated oxidation of Hb. Accordingly, the PEG chains are assumed to increase the water molecules in the hydration layer of Hb and enhance the autoxidation by promoting the nucleophilic attack of heme. The autoxidation rate of the PEGylated Hb does not show an inverse correlation with the oxygen affinity. The H 2O 2 mediated structural loss and the heme loss of Hb are increased by maleimide modification at Cys-93(beta) and further decreased by conjugation of the PEG chains. The autoxidation of the PEGylated Hbs is attenuated significantly in the plasma, possibly due to the presence of the antioxidant species in the plasma. This result is consistent with the recent suggestion that there is no direct correlation between the in vitro and in vivo autoxidation of the PEGylated Hb. Therefore, the pattern of PEGylation can be manipulated for the design of the PEGylated Hb with minimal autoxidation.  相似文献   

9.
"Smart" drug carriers: PEGylated TATp-modified pH-sensitive liposomes   总被引:1,自引:0,他引:1  
To engineer drug carriers capable of spontaneous accumulation in tumors and ischemic areas via the enhanced permeability and retention (EPR) effect and further penetration and drug delivery inside tumor or ischemic cells via the action of the cell-penetrating peptide (CPP), we have prepared liposomes simultaneously bearing on their surface CPP (TAT peptide, TATp) moieties and protective PEG chains. PEG chains were incorporated into the liposome membrane via the PEG-attached phosphatidylethanolamine (PE) residue with PEG and PE being conjugated with the lowered pH-degradable hydrazone bond (PEG-HZ-PE). Under normal conditions, liposome-grafted PEG "shielded" liposome-attached TATp moieties since the PEG spacer for TATp attachment (PEG(1000)) was shorter than protective PEG(2000). PEGylated liposomes are expected to accumulate in targets via the EPR effect, but inside the "acidified" tumor or ischemic tissues lose their PEG coating due to the lowered pH-induced hydrolysis of HZ and penetrate inside cells via the now-exposed TATp moieties. This concept is shown here to work in cell cultures in vitro as well as in ischemic cardiac tissues in the Langendorff perfused rat heart model and in tumors in experimental mice in vivo.  相似文献   

10.
As a potential hemoglobin (Hb)-based oxygen carrier (HBOC), the PEGylated Hb has received much attention for its non-nephrotoxicity. However, PEGylation can adversely alter the structural and functional properties of Hb. The site of PEGylation is an important factor to determine the structure and function of the PEGylated Hb. Thus, protection of some sensitive residues of Hb from PEGylation is of great significance to develop the PEGylated Hb as HBOC. Here, Cys-93(β) of Hb was conjugated with 20 kDa polyethylene glycol (PEG20K) through hydrazone and disulfide bonds. Then, the conjugate was modified with PEG5K succinimidyl carbonate (PEG5K-SC) using acylation chemistry, followed by removal of PEG20K Hb with hydrazone hydrolysis and disulfide reduction. Reversible conjugation of PEG20K at Cys-93(β) can protect Lys-95(β), Val-1(α) and Lys-16(α) of Hb from PEGylation with PEG5K-SC. The autoxidation rate, oxygen affinity, structural perturbation and tetramer instability of the PEGylated Hb were significantly decreased upon protection with PEG20K. The present study is expected to improve the efficacy of the PEGylated Hb as an oxygen therapeutic.  相似文献   

11.
Increasing the molecular size of acellular hemoglobin (Hb) has been proposed as an approach to reduce its undesirable vasoactive properties. The finding that bovine Hb surface decorated with about 10 copies of PEG5K per tetramer is vasoactive provides support for this concept. The PEGylated bovine Hb has a strikingly larger molecular radius than HbA (1). The colligative properties of the PEGylated bovine Hb are distinct from those of HbA and even polymerized Hb, suggesting a role for the colligative properties of PEGylated Hb in neutralizing the vasoactivity of acellular Hb. To correlate the colligative properties of surface-decorated Hb with the mass of the PEG attached and also its vasoactivity, we have developed a new maleimide-based protocol for the site-specific conjugation of PEG to Hb, taking advantage of the unusually high reactivity of Cys-93(beta) of oxy HbA and the high reactivity of the maleimide to protein thiols. PEG chains of 5, 10, and 20 kDa have been functionalized at one of their hydroxyl groups with a maleidophenyl moiety through a carbamate linkage and used to conjugate the PEG chains at the beta-93 Cys of HbA to generate PEGylated Hbs carrying two copies of PEG (of varying chain length) per tetramer. Homogeneous preparations of (SP-PEG5K)(2)-HbA, (SP-PEG10K)(2)-HbA, and (SP-PEG20K)(2)-HbA have been isolated by ion exchange chromatography. The oxygen affinity of Hb is increased slightly on PEGylation, but the length of the PEG-chain had very little additional influence on the O(2) affinity. Both the hydrodynamic volume and the molecular radius of the Hb increased on surface decoration with PEG and exhibited a linear correlation with the mass of the PEG chain attached. On the other hand, both the viscosity and the colloidal osmotic pressure (COP) of the PEGylated Hbs exhibited an exponential increase with the increase in PEG chain length. In contrast to the molecular volume, viscosity, and COP, the vasoactivity of the PEGylated Hbs was not a direct correlate of the PEG chain length. There appeared to be a threshold for the PEG chain length beyond which the protection against vasoactivity is decreased. These results suggest that the modulation of the vasoactivity of Hb by PEG could be a function of the surface shielding afforded by the PEG, the latter being a function of the disposition of the PEG chain on the protein surface, which in turn is a function of the length of the PEG chain. Thus, the biochemically homogeneous PEGylated Hbs described in the present study, surface-decorated with PEG chains of appropriate size, could serve as potential candidates for Hb-based oxygen carriers.  相似文献   

12.
There is considerable clinical interest in the use of "second-generation" therapeutic proteins produced by conjugation of the native protein with various polymers including poly(ethylene glycol) (PEG). One of the challenges in the production of polymer-protein conjugates is the need to remove residual polymer, native (unreacted) protein, and any reaction byproducts from the final therapeutic formulation. The overall objective of this study was to evaluate the possibility of using ultrafiltration for the purification of a model PEGylated protein. Sieving data were obtained using PEGylated alpha-lactalbumin, the native protein, and the poly(ethylene glycol) over a range of pH, ionic strength, and filtrate flux using both neutral and charge-modified composite regenerated cellulose membranes. Purification of the PEGylated protein was achieved using a two-stage diafiltration process. The first stage used a neutral membrane to remove the unreacted protein and any small reaction byproducts while retaining the large PEGylated product. The second stage used a negatively charged membrane to remove the neutral poly(ethylene glycol) while retaining the PEGylated alpha-lactalbumin as a result of strong electrostatic interactions. These results clearly demonstrate the potential of using membrane-based separations for the purification of second-generation therapeutic proteins.  相似文献   

13.
PEGylation is a successful approach to improve potency of a therapeutic protein. The improved therapeutic potency is mainly due to the steric shielding effect of PEG. However, the underlying mechanism of this effect on the protein is not well understood, especially on the protein interaction with its high molecular weight substrate or receptor. Here, experimental study and molecular dynamics simulation were used to provide molecular insight into the interaction between the PEGylated protein and its receptor. Staphylokinase (Sak), a therapeutic protein for coronary thrombolysis, was used as a model protein. Four PEGylated Saks were prepared by site-specific conjugation of 5 kDa/20 kDa PEG to N-terminus and C-terminus of Sak, respectively. Experimental study suggests that the native conformation of Sak is essentially not altered by PEGylation. In contrast, the bioactivity, the hydrodynamic volume and the molecular symmetric shape of the PEGylated Sak are altered and dependent on the PEG chain length and the PEGylation site. Molecular modeling of the PEGylated Saks suggests that the PEG chain remains highly flexible and can form a distinctive hydrated layer, thereby resulting in the steric shielding effect of PEG. Docking analyses indicate that the binding affinity of Sak to its receptor is dependent on the PEG chain length and the PEGylation site. Computational simulation results explain experimental data well. Our present study clarifies molecular details of PEG chain on protein surface and may be essential to the rational design, fabrication and clinical application of PEGylated proteins.  相似文献   

14.
PEGylation induced changes in molecular volume and solution properties of HbA have been implicated as potential modulators of its vasoconstrictive activity. However, our recent studies with PEGylated Hbs carrying two PEG chains/Hb, have demonstrated that the modulation of the vasoconstrictive activity of Hb is not a direct correlate of the molecular volume and solution properties of the PEGylated Hb and implicated a role for the surface charge and/or the pattern of surface decoration of Hb with PEG. HbA has now been modified by thiolation mediated maleimide chemistry based PEGylation that does not alter its surface charge and conjugates multiple copies of PEG5K chains. This protocol has been optimized to generate a PEGylated Hb, (SP-PEG5K)6-Hb, that carries ~six PEG5K chains/Hb – HexaPEGylated Hb. PEGylation increased the O2 affinity of Hb and desensitized the molecule for the influence of ionic strength, pH, and allosteric effectors, presumably a consequence of the hydrated PEG-shell generated around the protein. The total PEG mass in (SP-PEG5K)6-Hb, its molecular volume, O2 affinity and solution properties are similar to that of another PEGylated Hb, (SP-PEG20K)2-Hb, that carries two PEG20K chains/Hb. However, (SP-PEG5K)6-Hb exhibited significantly reduced vasoconstriction mediated response than (SP-PEG20K)2-Hb. These results demonstrate that the enhanced molecular size and solution properties achieved through the conjugation of multiple copies of small PEG chains to Hb is more effective in decreasing its vasoconstrictive activity than that achieved through the conjugation of a comparable PEG mass using a small number of large PEG chains.  相似文献   

15.
In the present study, we demonstrated zeolites' potential contribution to establish a method for preparing successfully refolded and reassembled PEGylated protein nanoparticles without the use of protein denaturants through the proteins' reassembly process. At first, the PEGylated nanoparticles are disassembled into identical PEGylated protein subunits by means of protein denaturants, and then the denatured subunits are adsorbed to zeolites. After the complete removal of denaturants, high-molecular-weight poly(ethylene glycol) (PEG) molecules are added to a solution where the zeolites suspend. Consequently, the PEGylated proteins are gradually reassembled into nanoparticles because the subunits are desorbed from the zeolites by the steric hindrance of the added PEG molecules. The present study reveals that PEGylated encapsulin was reassembled and hollow encapsulin nanoparticles were obtained. The results clearly demonstrate the usefulness of zeolites as a tool for the successful refolding of PEGylated proteins and their reassembly with tertiary structures.  相似文献   

16.
The covalent conjugation of a functionalized poly(ethylene glycol) (PEG) to multiple nucleophilic amine residues results in a heterogeneous mixture of PEG positional isomers. Their physicochemical, biological, and pharmaceutical properties vary with the site of conjugation of PEG. Yields are low because of inefficient conjugation chemistry and production costs high because of complex purification procedures. Our solution to these fundamental problems in PEGylating proteins has been to exploit the latent conjugation selectivity of the two sulfur atoms that are derived from the ubiquitous disulfide bonds of proteins. This approach to PEGylation involves two steps: (1) disulfide reduction to release the two cysteine thiols and (2) re-forming the disulfide by bis-alkylation via a three-carbon bridge to which PEG was covalently attached. During this process, irreversible denaturation of the protein did not occur. Mechanistically, the conjugation is conducted by a sequential, interactive bis-alkylation using alpha,beta-unsaturated beta'-monosulfone functionalized PEG reagents. The combination of (a) maintaining the protein's tertiary structure after disulfide reduction, (b) the mechanism for bis-thiol selectivity of the PEG reagent, and (c) the steric shielding of PEG ensure that only one PEG molecule is conjugated at each disulfide bond. PEG was site-specifically conjugated via a three-carbon bridge to 2 equiv of the tripeptide glutathione, the cyclic peptide hormone somatostatin, the tetrameric protein l-asparaginase, and to the disulfides in interferon alpha-2b (IFN). SDS-PAGE, mass spectral, and NMR analyses were used to confirm conjugation, thiol selectivity, and connectivity. The biological activity of the l-asparaginase did not change after the attachment of four PEG molecules. In the case of IFN, a small reduction in biological activity was seen with the single-bridged IFN (without PEG attached). A significantly larger reduction in biological activity was seen with the three-carbon disulfide single-bridged PEG-IFNs and with the double-bridged IFN (without PEG attached). The reduction of the PEG-IFN's in vitro biological activity was a consequence of the steric shielding caused by PEG, and it was comparable to that seen with all other forms of PEG-IFNs reported. However, when a three-carbon bridge was used to attach PEG, our PEG-IFN's biological activity was found to be independent of the length of the PEG. This property has not previously been described for PEG-IFNs. Our studies therefore suggest that peptides, proteins, enzymes, and antibody fragments can be site-specifically PEGylated across a native disulfide bond using three-carbon bridges without destroying their tertiary structure or abolishing their biological activity. The stoichiometric efficiency of this approach also enables recycling of any unreacted protein. It therefore offers the potential to make PEGylated biopharmaceuticals as cost-effective medicines for global use.  相似文献   

17.
Polyethylene glycol (PEG) conjugation technology has been successfully applied to improve the performance of protein drugs. In this study, L-asparaginase was N-terminal site-specifically modified by alkylating PEG with monomethoxy polyethylene glycol-propionaldehyde (mPEG-ALD20000). The optimum reaction parameters were determined as pH 5.0, a molar ratio of mPEG-ALD2000 to L-asparaginase of 10:1, a reaction time of 16 h and temperature of 25 degrees C. PEG-L-asparaginase (PEG-L-ASNase) was isolated and purified with consecutive anion-exchange (XK, 16 x 20 cm, Q Sepharose FF) and gel-filtration (Tricorn, 10 x 600 cm, Sephacryl S-300 HR) chromatography, respectively. PEG-L-ASNase retained 43.5% of its activity and the N-terminal amino groups were modified to an extent of 3.67%.  相似文献   

18.
Recent studies highlighted the potential of PEGylated proteins to improve stabilities and pharmacokinetics of protein drugs. Ion‐exchange chromatography (IEX) is among the most frequently used purification methods for PEGylated proteins. However, the underlying physical mechanisms allowing for a separation of different PEGamers (proteins with a varying number of attached PEG molecules) are not yet fully understood. In this work, mechanistic chromatography modeling is applied to gain a deeper understanding of the mass transfer and adsorption/desorption mechanisms of mono‐PEGylated proteins in IEX. Using a combination of the general rate model (GRM) and the steric mass action (SMA) isotherm, simulation results in good agreement with the experimental data are achieved. During linear gradient elution of proteins attached with PEG of different molecular weight, similar peak heights, and peak shapes at constant gradient length are observed. A superimposed effect of increased desorption rate and reduced diffusion rate as a function of the hydrodynamic radius of PEGylated proteins is identified to be the reason of this anomaly. That is why the concept of the diffusion‐desorption‐compensation effect is proposed. In addition to the altered elution orders, PEGylation results in a considerable decrease of maximum binding capacity. By using the SMA model in a kinetic formulation, the adsorption behavior of PEGylated proteins in the highly concentrated state is described mechanistically. An exponential increase in the steric hindrance effect with increasing PEG molecular weight is observed. This suggests the formation of multiple PEG layers in the interstitial space between bound proteins and an associated shielding of ligands on the adsorber surface to be the cause of the reduced maximum binding capacity. The presented in silico approach thus complements the hitherto proposed theories on the binding mechanisms of PEGylated proteins in IEX.  相似文献   

19.
To develop targeted pharmaceutical carriers additionally capable of responding to certain local stimuli, such as decreased pH values in tumors or infarcts, targeted long-circulating PEGylated liposomes and PEG-phosphatidylethanolamine (PEG-PE)-based micelles have been prepared with several functions. First, they are capable of targeting a specific cell or organ by attaching the monoclonal antimyosin antibody 2G4 to their surface via pNP-PEG-PE moieties. Second, these liposomes and micelles were additionally modified with biotin or TAT peptide (TATp) moieties attached to the surface of the nanocarrier by using biotin-PE or TATp-PE or TATp-short PEG-PE derivatives. PEG-PE used for liposome surface modification or for micelle preparation was made degradable by inserting the pH-sensitive hydrazone bond between PEG and PE (PEG-Hz-PE). Under normal pH values, biotin and TATp functions on the surface of nanocarriers were "shielded" by long protecting PEG chains (pH-degradable PEG(2000)-PE or PEG(5000)-PE) or by even longer pNP-PEG-PE moieties used to attach antibodies to the nanocarrier (non-pH-degradable PEG(3400)-PE or PEG(5000)-PE). At pH 7.4-8.0, both liposomes and micelles demonstrated high specific binding with 2G4 antibody substrate, myosin, but very limited binding on an avidin column (biotin-containing nanocarriers) or internalization by NIH/3T3 or U-87 cells (TATp-containing nanocarriers). However, upon brief incubation (15-30 min) at lower pH values (pH 5.0-6.0), nanocarriers lost their protective PEG shell because of acidic hydrolysis of PEG-Hz-PE and acquired the ability to become strongly retained on an avidin column (biotin-containing nanocarriers) or effectively internalized by cells via TATp moieties (TATp-containing nanocarriers). We consider this result as the first step in the development of multifunctional stimuli-sensitive pharmaceutical nanocarriers.  相似文献   

20.
rhG-CSF (recombinant human granulocyte-colony stimulating factor) was chemically conjugated with branched mPEG (monomethoxyl polyethylene glycols), which was synthesized by a new method with the reaction between highly reactive carboxymethylated PEG succinimidy ester (SCM-PEG) and strongly nuclophilicitic amino group of lysine ethyl ester hydrochloride (lys-OEt 2HCl) in methylene chloride. The monopegylated rhG-CSF with branched mPEG (mono-B-pegylated rhG-CSF) was purified by one-step cationic exchange chromatography and characterized with HPSEC (high performance size exclusion chromatography), SDS-PAGE and MALDI-TOF MS. A monopegylated rhG-CSF with linear mPEG (mono-L-pegylated rhG-CSF) was also prepared to investigate the effect of structural difference on bioactivities. The comparison of mono-B-pegylated and mono-L-pegylated rhG-CSF was carried out on in vitro bioactivity, in vivo half-life time and Fr (relative bioavailability). The results showed that the in vitro relative bioactivity decreased to 54%, 61% for mono-B-pegylated and mono-L-pegylated rhG-CSF, respectively. However, compared with the unmodified rhG-CSF, the mono-B-pegylated and mono-L-pegylated rhG-CSF prolonged plasma half-life time from 40 min to 190 min and 145 min, respectively. The Fr was 2.01 for the mono-B-pegylated rhG-CSF, while 1.32 for the mono-L-pegylated. These results suggested that the mono-B-pegylated rhG-CSF is more effective in improving pharmacokinetic performance than the mono-L-pegylated and unmodified rhG-CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号