首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Regrowth of dual-purpose canola after grazing is important for commercial success and the aim of this research was to investigate the effects of defoliation on the development, growth, photosynthesis and allocation of carbohydrates.

Methods

We conducted two pot experiments in which defoliation was conducted at multiple intensities with scissors. Experiment 1 determined changes in flowering date due to defoliation while Experiment 2 investigated the effects of defoliation on growth, photosynthesis and allocation of carbohydrates in canola.

Results

Time to the appearance of the first flower was delayed by up to 9 days after the removal of all leaves at the start of stem elongation (GS30), and up to 19 days if the elongating bud was also removed. Stem growth rate decreased by 56–86 % due to defoliation and tap roots did not increase in mass when plants were completely defoliated. Leaf area continued to expand at the same rate as in un-defoliated plants. The new leaf area established per gram of regrowth biomass over 20 days was 158 cm2.g-1 for the complete defoliation treatments compared with 27 cm2.g?1 for the half-defoliated treatment and 13 cm2.g?1 for the un-defoliated treatment. Despite a reduction in total biomass of up to 60 %, the proportion of dry matter partitioned to the leaves was 18 % for all treatments within 20 days after defoliation. Total non-structural carbohydrate levels were reduced rapidly in the stem by day two (predominately sucrose) and the tap root by day four (predominately starch) after defoliation and did not recover to match un-defoliated plant levels within 20 days. Residual leaves on defoliated plants maintained photosynthetic rate compared with the same leaf cohorts on un-defoliated plants in which photosynthetic rate decreased to 39 % by day 12.

Conclusions

The rapid recovery of leaf area in defoliated canola was facilitated by the sustained high photosynthetic rate in remaining leaves, rapid mobilisation of stored sugars (stem) and starch (root), and a cessation of root and stem growth.  相似文献   

2.
The growth of the shoot and roots of seedling plants of cocoa (Theobroma cacao L.) under constant glasshouse conditions showed a rhythmic cycle, with the maximum growth stages of each alternating in a regular sequence. When the growth cycle of the shoot was upset by removing all new leaves immediately after unfolding, the roots showed a high constant growth rate during this period, suggesting that normally the rapidly expanding leaves exert an inhibitory influence on the roots. Conversely removal of portions of the root delayed the production of new leaves in the shoot. The level of soluble and starch carbohydrate in the mature leaves, roots and stem declined during the period of expansion of the flush leaves, but accumulated again at the end of the leaf expansion stage. It is likely that this reserve carbohydrate was remobilised and translocated to the flush leaves during their period of expansion. A large proportion of newly formed photoassimilate, as shown by the distribution of 14C radioactivity from different source leaves, was also translocated to the young leaves during expansion. The large sink created by these leaves may cause photoassimilate and reserve carbohydrate to be diverted from the roots, thereby inhibiting root growth during the stage of leaf expansion. It is suggested that the rhythmic leaf production at the apex may control the growth cycle of the roots.  相似文献   

3.
Osaki  M.  Shinano  T.  Yamada  M.  Yamada  S. 《Photosynthetica》2004,42(1):123-131
Leaf-root interaction is a critical factor for plant growth during maturation and activity of roots is maintained by a sufficient supply of photosynthates. To explain photosynthate distribution among organs in field crops, the node unit hypothesis is proposed. One node unit consists of a leaf and an upper adventitous root, as well as the axillary organs and the lower adventitious root, which is adjacent to one node. Using 14C as tracer, the carbon distribution system has been clarified using spring wheat, soybean, tomato, and potato. The interrelationship among organs from the strongest to the weakest is in the following order: (1) within the node unit > (2) between the node unit in the same or adjacent phyllotaxy > (3) in the main root or apical organs, which are adjacent to the node unit. Within the node unit, 14C assimilated in the leaf on the main stem tended to distribute to axillary organs in the same node unit. The 14C assimilated in the leaf of axillary organs tended to distribute within the axillary organs, including adventitious roots in the axillary organ and then translocated to the leaf on the main leaf of the same node unit. In different organs of the node unit in the same or adjacent phyllotaxy, 14C assimilated in the leaf on the main stem was also distributed to the organs (node unit) belonging to the same phyllotaxy in dicotyledons, while in monocotyledons, the effect of phyllotaxy on 14C distribution was not clear. Among roots/apical organs and node unit, 14C assimilated in the upper node unit was distributed to apical organs and 14C assimilated in the lower node unit was distributed to roots. Thus the node unit hypothesis of photosynthate distribution among organs is very important for understanding the high productivity of field crops.  相似文献   

4.
The role of roots in the enhancement of cytokinin content and leaf growth of Phaseolus vulgaris plants after decapitation and partial defoliation was investigated. Partial excision of the roots of plants which were decapitated above the primary leaf node resulted in a reduction of leaf growth and soluble proteins accumulation in the primary leaves. Roots excision was done at time of decapitation and repeated 8 days later. Endogenous cytokinins, known to be involved in enhancing shoot growth, accumulated in the leaves and stems of decapitated and partially defoliated plants. Lower levels of cytokinins were detected in the leaves of decapitated plants with only a partial root system. The level of cytokinins in the roots of decapitated plants was reduced by partial root excision. The growth and accumulation of cytokinins in leaves were, however, not totally suppressed by removing a large proportion of the roots. At the commencement of the experiment the stem had a higher cytokinin content than both the leaves and roots. This suggests that the stem could be an alternative source of cytokinins to the leaves. The cytokinin complement in the leaves of decapitated plants is not identical to that in the roots. It appears that cytokinins supplied by the roots are metabolized in the leaves, or that alternatively certain cytokinins are synthesized in the leaves themselves.  相似文献   

5.
Infra-red gas analysis and a quantitative radiocarbon tracertechnique were used to measure photosynthesis, and the export,distribution and utilization of current assimilate in the regrowthof leaf tissue and the growth of stem and root of partially-defoliateduniculm barley plants. After defoliation, which removed allleaf tissue above the ligule of leaf 3, the rate of photosynthesisof the remaining two older leaves fell to 90–95 per centof that of control leaves, but they exported more of their assimilatedcarbon to meristems elsewhere in the plant during the first48 h after the defoliation. The level of export from the twoolder leaves began to decline when new leaf tissue regrew fromthe shoot apex, and fell below that of the control leaves 4days after defoliation. The two older leaves supplied the assimilateused in the regrowth of new leaf tissue immediately after defoliation:previously they had exported most of their assimilate to root.There was no evidence that ‘reserves’ were mobilizedto meet the needs of regrowth at leaf meristems or, indeed,of the growth in stem and root; current photosynthesis suppliedsufficient assimilate to account for all observed growth. Ingeneral, the plants responded to defoliation with a rapid andmarked re-allocation of assimilate from root to leaf meristems,with the result that root growth was severely retarded but newleaf tissue grew at 70–100 per cent of the rate observedin control plants.  相似文献   

6.
The effects of defoliation treatments on plant growth in sunflower (Helianthus annuus) were studied in the field. Four defoliation treatments, 0 (control), 37.4, 56.1 and 93.4% of the total leaf dry weight, were applied to plants that had small third leaves. Decreased leaf weight/whole plant weight (F/W) ratios in defoliated plants rapidly recovered to almost the same ratio as that observed in the control within 12 to 16 days after defoliation according to the degree of defoliation. The mechanism involved in the recovery of the F/W ratio in defoliated plants mainly consisted of three parameters: enhancement of (1) carbon distribution ratios in the leaves, (2) photosynthetic activity in the remaining leaves, and (3) retranslocation of carbon from the stem and/or roots to leaves. Inhibitive effects of defoliation on relative growth rate and net assimilation rate were seen at an early stage, but subsequently both rates became larger in defoliated plants than in controls. Defoliated plants tended to show rapid development and expansion of new leaves, and to show increased specific leaf area and protein synthesis in individual leaves. The sugar content of leaves in defoliated plants was higher than that in controls, while the content in both stem and roots was lower. These responses seem to be advantageous for development of the photosynthetic system. Heights of defoliated plants were clearly depressed according to the degree of defoliation, and this was attributed largely to differences in the elongation rates of the internodes resulting from defoliation.  相似文献   

7.
Tree carbohydrate reserves are usually compromised following insect outbreak, which results in a delay in leaf emergence and a reduction in growth, especially in cold environments. However, in recent times, severe defoliation of subarctic mountain birches (Betula pubescens ssp. czerepanovii) by the winter moth (Operophtera brumata) has not induced such responses. This may be the result of a warming climate stimulating plant primary metabolism. We examined if increasing thermal sum (sum of daily mean temperatures above +5 °C, d.d.) and complete foliage loss affected the concentrations of carbohydrates in sap, juvenile leaves, and fine roots of mountain birches in northern Finland and Norway. The sampling was conducted at the beginning of the growing season, two years after the insect outbreak. We also investigated the morphologic properties of mature leaves and the shoot growth of the trees. Our results showed that the carbohydrate concentrations in leaves and roots (averages 67.8 and 12.5 mg g?1 DW, respectively) decreased in defoliated trees with increasing thermal sum (>400 d.d.), whereas the response in intact trees was the opposite. The carbohydrates in the sap were unaffected by defoliation or thermal sum accumulation. The leaf area of mature leaves and the height growth of long shoots were greater in trees at warmer sites, irrespective of defoliation. However, defoliation increased the leaf weight per area (SLW: specific leaf weight). We conclude that under warmer growing conditions, low early-season leaf and fine root carbohydrate concentrations of previously defoliated trees cannot be used as indicators of aboveground growth.  相似文献   

8.
The postulate that single roots of Zea mays transport their absorbed phosphorus nonuniformly to the leaves was tested. Plants were grown under growth chamber conditions for three to four weeks in nutrient solution. At this stage of growth a series of plants was placed into a system in which two roots on each plant were allowed to absorb either 33P or 32P from uptake solutions for time intervals of up to 24 hours. Plants subsequently were harvested such that each leaf was partitioned into samples containing tissue from one side or the other of the midrib. All samples were assayed for 33P and 32P and the results were expressed as the amount of total P transported into different plant parts from a single root. Nonuniform P accumulation in the leaves occurred and different patterns of accumulation, dependent on the type of root chosen for uptake were observed. Nearly uniform P accumulation occurred between one side and the other of a given leaf when transport was from radicle roots. In marked contrast, transport from adventitious roots resulted in an alternating pattern of accumulation between one side and the other of each successive leaf up the stem. The seminal root system supplied more P to the older leaves than did the adventitious root system. The nature of these nonuniform P transport patterns is attributed to the vascular organization between roots and leaves.  相似文献   

9.
Labelled carbon dioxide was supplied for 22 hrs to a leaf of the leader or to the lateral shoot in two-year-old apple seedlings. The distribution of radioactive assimilates within the plant following this treatment was investigated by using radioautography. The transport of labelled assimilates from the young leaf of the leader was very meagre and affected only parts of the stem and the leaves situated in the close vicinity of the treated leaf. The14C-labelled assimilates from the mature leaf of the leader were transported in a considerable amount to the apex and to the other leaves of the leader. They were also found in an appreciable amount in the stem and the roots, as well as in some lateral shoots. After supplying14CO2 to the lateral shoot remarkable transport of labelled assimilates was observed. Radioactivity was detected in the tip and in the youngest leaves of the leader, as well as in the roots. Their path in the stem was studied by dissecting the plant and examining the cross section from each internode. This method revealed that the assimilates from the treated leaf or shoot were transported downward only on one side of the stem in a helical pattern. The lateral shoots situated on the radioactive side of the stem were also labelled, whereas those situated on the opposite (non-radioactive) side were not labelled.  相似文献   

10.
A technique for reliable labeling of the carbon reserves of the trunk and roots without labeling the current year's growth of grapevines was developed in order to study retranslocation of carbon from the perennial storage tissues into the fruit in response to defoliation stress during the ripening period. A special training system with two shoots was used: the lower one (feeding shoot) was cut back and defoliated to one single leaf (14CO2-feeding leaf) while the other (main shoot) was topped to 12 leaves. The potted plants were placed in a water bath at 30 °C to increase root temperature and therefore their sink activity. Additionally, a cold barrier (2–4 °C) was installed at the base of the main shoot to inhibit acropetal 14C translocation. Using this method, we were able to direct labeled assimilates to trunk and roots in preference to the current year's growth. On vines with root and shoot at ambient temperature, 44% of the 14C activity was found in the main shoot 16 h after feeding whereas only 2% was found in the temperature-treated vines. At the onset of fruit ripening, and at three-week intervals thereafter until harvest, potted grapevines were fed with 14CO2 using the temperature treatment described above. Sixteen hours after feeding, half of the vines of each group were defoliated by removing all except the two uppermost main leaves. Three weeks after each treatment, vines were destructively harvested and the dry weight and 14C incorporation determined for all plant parts. Under non-stressing conditions, there was no retranslocation of carbon reserves to support fruit maturation. Vines responded to defoliation stress by altering the natural translocation pattern and directing carbon stored in the lower parts to the fruit. In the three weeks following veraison (the inception of ripening in the grape berry), 12% of the labeled carbon reserves was translocated to the fruit of defoliated plants compared to 1.6% found in the clusters of control vines. Retranslocation from trunk and roots was highest during the middle of the ripening period, when 32% of the labeled carbon was found in the fruit compared to 0.7% in control plants. Defoliation during this period also caused major changes in dry-matter partitioning: the fruit represented 31% of total plant biomass compared to 21% measured in the control vines. Root growth was reduced by defoliation at veraison and during the ripening period. Defoliation three weeks before harvest did not affect dry matter or 14C partitioning.  相似文献   

11.
Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo‐inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.  相似文献   

12.
This study investigated the separate and combined effects of nitrate (NO3 ?) and cytokinin additions on continuous ryegrass regrowth after defoliation and the underlying mechanisms. Our results showed that frequent defoliation reduced the biomass of newly grown leaves and roots, the root soluble carbohydrate contents, the root vitality (an indicator of root absorption capacity), and the leaf contents of NO3 ?, zeatin and zeatin riboside (Z + ZR), and isopentenyl adenine and isopentenyl adenosine (IP + IPA). NO3 ?addition to the roots or leaves increased the biomass of newly grown leaves as well as the leaf contents of NO3 ?, Z + ZR, and IP + IPA without increasing the root-to-shoot delivery of endogenous cytokinin. Interestingly, cytokinin directly added to the leaves also increased the biomass of newly grown leaves and their Z + ZR and IP + IPA contents, suggesting that nitrate-induced leaf cytokinin production mediates the growth-promoting effects of nitrate. We also found that cytokinin had a direct whereas NO3 ? had an indirect effect on the biomass of newly grown leaves. Taken together, our results indicate that leaf cytokinin production induced by NO3 ? absorbed through the roots plays a key role in continuous ryegrass regrowth after defoliation.  相似文献   

13.

Background and Aims

To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings.

Methods

Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts.

Key Results

Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed.

Conclusions

The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability.  相似文献   

14.
橡胶树(Heveabrasiliensis)种子催芽生长一般使用沙床培育,沙子是不可再生资源,为了选择一种适合橡胶树种子培育方式来替代对沙子的依赖,该研究通过水培、悬空培育和传统的沙培比较橡胶树实生苗第1蓬叶稳定时,苗木的生长势、生理指标及养分含量。结果表明,水培实生苗地上部株高、茎粗、叶面积的长势最佳,壮苗指数和生物量的含量最高,但其根太长,根相对较细。水培的叶、茎、根的可溶性糖、丙二醛、游离脯氨酸、超氧化物歧化酶的含量均较低;水培和悬空培育的叶片和茎的叶绿素、类胡萝卜素及根系活力的含量没有显著性差异,均高于沙培。水培的叶、茎、根中的氮和磷含量最低,沙培的最高;而水培实生苗根和茎中钾的含量较高,叶片中含量与悬空培育、沙培均没有显著性差异;悬空培育在叶、茎、根中钾的含量最低。水培促进了苗木的生长,降低干旱胁迫,提高养分利用率,但后续还需调控根系,建设良好根团。悬空培育的苗木长势较弱,还需进一步完善方法。  相似文献   

15.
To assess the changes in seasonal carbohydrate status of Populus tremuloides, sugar and starch concentrations were monitored in roots, stem xylem and phloem and branches of ten different clones. Time of root growth was assessed by extraction of roots from in-growth cores collected five times during the season. Overall the results showed that the main period of root growth in these northern clones was shifted from spring to late summer and fall likely due to the microclimatic conditions of the soil. This increase in root growth was associated with a decline in total non-structural carbohydrate content in the roots during this period. This study also found that the carbohydrate reserves in these clones were being stored as close as possible to the organs of annual growth (leaves and roots). At the time of leaf flush, the largest reduction in stored carbohydrates (3% of dry weight) was observed in the branches of the trees, compared to a slight decline in the stem and roots. Starch and sugar reserves in most tissues were very low in early summer. This suggests that reserves that might be used for the regrowth of foliage after insect defoliation or other disturbances, are relatively small compared to the portion that is needed for maintenance and typical growth developments such as leaf flush.  相似文献   

16.
Summary Plant growth and allocation to root, shoot and carbon-based leaf chemical defense were measured in response to defoliation and nitrate limitation inHeterotheca subaxillaris. Field and greenhouse experiments demonstrated that, following defoliation, increased allocation to the shoot results in an equal root/shoot ratio between moderately defoliated (9% shoot mass removed) and non-defoliated plants. High defoliation (28% shoot mass or >25% leaf area removed) resulted in greater proportional shoot growth, reducing the root/shot ratio relative to moderate or non-defoliated plants. However, this latter effect was dependent on nutritional status. Despite the change in distribution of biomass, defoliation and nitrate limitation slowed the growth and development ofH. subaxillaris. Chronic defoliation decreased the growth of nitrate-rich plants more than that of nitrate-limited plants. The concentration of leaf mono- and sesqui-terpenes increased with nitrate-limitation and increasing defoliation. Nutrient stress resulting from reduced allocation to root growth with defoliation may explain the greater allocation to carbon-based leaf defenses, as well as the defoliation-related greater growth reduction of nitrate-rich plants.  相似文献   

17.
采用4种浓度的NaCl溶液(50、100、150、200 mmol/L)处理二穗短柄草和拟南芥(对照)幼苗,测定不同浓度盐胁迫下2种植物幼苗的生长指标和离子分布,以探讨二穗短柄草在盐胁迫下主要阳离子平衡机制.结果表明:(1)盐胁迫显著抑制二穗短柄草根叶的生物量积累.(2)根冠比数据显示,在盐胁迫条件下二穗短柄草能够更好地维系地下部分的生物量积累.(3)在4种浓度盐胁迫下,二穗短柄草叶中Na+含量低于根系,而且K+、Cl-含量和K+/Na+比值始终高于根系,说明在二穗短柄草中Na+从地下到地上的转运受到抑制,但对Cl-的转运缺乏有效的调控.(4)回归分析发现,盐胁迫下二穗短柄草和拟南芥根部Na+与K+含量变化呈正相关关系,而在叶部则不相关,说明二穗短柄草和拟南芥Na+与K+在根部具有相同的离子通道,而在叶部却具有各自独立的转运途径.  相似文献   

18.
The coumarin composition of Peucedanum palustre (L.) Moench populations growing in Finland was investigated. A total of 132 flowering P. palustre specimens from 43 locations in southern and central Finland were collected, divided into root, stem, leaf, and umbel samples, and analyzed by HPLC. HPLC coupled to high‐resolution mass spectrometry was used to aid the identification of coumarins. A total of 13 coumarin‐structured compounds were quantitatively analyzed from the samples. The coumarin profile of root samples was found to differ from the aerial plant parts. The main coumarins in roots were oxypeucedanin and columbianadin. In aerial parts, peulustrin isomers were the most abundant coumarin components. Umbels and leaves also contained a considerable amount of umbelliprenin, which was only found in traces in roots. Based on hierarchical cluster analysis of the coumarin profiles, some populations shared common characteristics. The most distinct property connecting certain populations was their high peulustrin content. Another notable common property between some populations was the high umbelliprenin content in aerial plant parts. Some populations were clustered together due to their low overall coumarin content.  相似文献   

19.
1. The experiments show that the mass of air roots formed in a stem increases with the mass of the leaf attached to the stem, though it has not been possible to establish an exact mathematical relation between the two masses, owing to unavoidable sources of error. 2. Darkened leaves do not increase the mass of roots formed. 3. In stems suspended horizontally air roots appear on the lower side of the stem, with the exception of the cut end where they usually appear around the whole circumference of the stem. When the lower half of a stem suspended horizontally is cut off, roots are formed on the upper side. It is shown by experiments on leaves suspended horizontally that the more rapidly growing roots and shoots on the lower side inhibit the root and shoot formation in the upper half of such a leaf; and likewise the more rapid formation of roots on the lower side of a horizontally suspended stem seems to account for the inhibition of root formation on the upper side of such a stem. Likewise the more rapid growth of shoots on the upper side of a stem suspended horizontally is likely to inhibit the growth of shoots on the lower side. 4. Each leaf contains in its axil a preformed bud capable of giving rise to a root, which never grows out in the normal stem on account of the inhibitory influence of the normal roots at the base of the plant. These dormant root buds are situated above (apically from) the dormant shoot bud. The apical root buds can be caused to develop into air roots when a piece of stem is cut out from a plant from which the leaves except those in the basal node of the piece are removed. The larger these basal leaves the better the experiments succeed. 5. These apical air roots grow out in a few days, while the roots at the basal end of the stem (which in our experiments dip into water) grow out about a week later. As soon as the basal roots grow out in water they cause the air roots in the more apical region of the stem to dry out and to disappear. 6. In addition to the basal roots, basal nodes have also an inhibitory effect on the growth of the dormant root buds in the apical region of a stem. This is indicated by the fact that a stem with one pair of leaves near the base will form apical air roots more readily when no node is situated on the stem basally from the leaf than if there is a node basally from the leaf.  相似文献   

20.
The relative significance of the use of stored or currently absorbed C for the growth of leaves or roots of Lolium perenne L. after defoliation was assessed by steady-state labelling of atmospheric CO2. Leaf growth for the first two days after defoliation was to a large extent dependent on the use of C reserves. The basal part of the elongating leaves was mainly new tissue and 91% of the C in this part of the leaf was derived from reserves assimilated prior to defoliation. However, half of the sucrose in the growth zone was produced from photosynthesis by the emerged leaves. Fructans that were initially present in elongating leaf bases were hydrolysed (loss of 93 to 100%) and the resulting fructose was found in the new leaf bases, suggesting that this pool may be used to support cell division and elongation. Despite a negative C balance at the whole-plant level, fructans were synthesized from sucrose that was translocated to the new leaf bases. After a regrowth period of 28 d, 45% of the C fixed before defoliation was still present in the root and leaf tissue and only 1% was incorporated in entirely new tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号