首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Coordinated Control of Respiratory Pattern During Locomotion in Birds   总被引:1,自引:1,他引:0  
SYNOPSIS. Cineradiographic studies of magpies and pigeons inflight, coupled with measurements of air sac pressures and tracnealairflows, indicate a significant compressive effect of downstrokeand expansive effect of upstroke. These mechanical impacts ofthe wingbeat cycle upon the respiratory system likely contributeto a phasic coordination of the two cycles that, in these species,ensures that upstroke corresponds to the transition into inspirationand downstroke corresponds to the transition into expiration,regardless of the ratio of wingbeats to breaths. Similar phasicpatterns have been reported for other birds. Respiratory muscleactivity patterns indicate that the upstroke may indeed assistinspiratory airflow and that the downstroke may assist expiratoryairflow. Stimulation of ventilation with 5% CO2 during flightdid not alter the phasic coordination patterns between respiratoryand wingbeat cycles in either pigeons or magpies. These data support the concepts that 1) interactions of locomotorand respiratory central controllers likely play an importantrole in regulating respiratory pattern during locomotion inbirds and 2) peripheral neural feedback of information aboutthe mechanical impact of the wingbeat cycle upon the functioningof the respiratory pump is likely to make a strong contributionto a respiratory pattern that is coordinated with the locomotorpattern in an energetically appropriate phasic relationship.The failure to alter that pattern with chemical stimulationof breathing suggests that the neural interaction between locomotorand respiratory networks is quite robust  相似文献   

2.
  1. Migration is ubiquitous among animals and has evolved repeatedly and independently. Comparative studies of the evolutionary origins of migration in birds are widespread, but are lacking in mammals. Mammalian species have greater variation in functional traits that may be relevant for migration. Interspecific variation in migration behaviour is often attributed to mode of locomotion (i.e. running, swimming, and flying) and body size, but traits associated with the evolutionary precursor hypothesis, including geographic distribution, habitat, and diet, could also be important predictors of migration in mammals. Furthermore, mammals vary in thermoregulatory strategies and include many heterothermic species, providing an alternative strategy to avoid seasonal resource depletion.
  2. We tested the evolutionary precursor hypothesis for the evolution of migration in mammals and tested predictions linking migration to locomotion, body size, geographic distribution, habitat, diet, and thermoregulation. We compiled a dataset of 722 species from 27 mammalian orders and conducted a series of analyses using phylogenetically informed models.
  3. Swimming and flying mammals were more likely to migrate than running mammals, and larger species were more likely to migrate than smaller ones. However, heterothermy was common among small running mammals that were unlikely to migrate. High-latitude swimming and flying mammals were more likely to migrate than high-latitude running mammals (where heterothermy was common), and most migratory running mammals were herbivorous. Running mammals and frugivorous bats with high thermoregulatory scope (greater capacity for heterothermy) were less likely to migrate, while insectivorous bats with high thermoregulatory scope were more likely to migrate.
  4. Our results indicate a broad range of factors that influence migration, depending on locomotion, body size, and thermoregulation. Our analysis of migration in mammals provided insight into some of the general rules of migration, and we highlight opportunities for future investigations of exceptions to these rules, ultimately leading to a comprehensive understanding of the evolution of migration.
  相似文献   

3.
We studied gas exchange in anesthetized ducks and geese artificially ventilated at normal tidal volumes (VT) and respiratory frequencies (fR) with a Harvard respirator (control ventilation, CV) or at low VT-high fR using an oscillating pump across a bias flow with mean airway opening pressure regulated at 0 cmH2O (high-frequency ventilation, HFV). VT was normalized to anatomic plus instrument dead space (VT/VD) for analysis. Arterial PCO2 was maintained at or below CV levels by HFV with VT/VD less than 0.5 and fR = 9 and 12 s-1 but not at fR = 6 s-1. For 0.4 less than or equal to VT/VD less than or equal to 0.85 and 3 s-1. less than or equal to fR less than or equal to 12 s-1, increased VT/VD was twice as effective as increased fR at decreasing arterial PCO2, consistent with oscillatory dispersion in a branching network being an important gas transport mechanism in birds on HFV. Ventilation of proximal exchange units with fresh gas due to laminar flow is not the necessary mechanism supporting gas exchange in HFV, since exchange could be maintained with VT/VD less than 0.5. Interclavicular and posterior thoracic air sac ventilation measured by helium washout did not change as much as expired minute ventilation during HFV. PCO2 was equal in both air sacs during HFV. These results could be explained by alterations in aerodynamic valving and flow patterns with HFV. Ventilation-perfusion distributions measured by the multiple inert gas elimination technique show increased inhomogeneity with HFV. Elimination of soluble gases was also enhanced in HFV as reported for mammals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Zusammenfassung Zum Verständnis der besonderen Struktur- und Funktionsprinzipien des Atemapparates der Vögel werden die spezielle Bauweise des Vogelrumpfes und die bei den Vögeln hochdifferenzierte Septierung ihrer Leibeshöhle dargestellt. Sodann werden der Bau der Lungen und ihres Bronchialsystems beschrieben sowie die Lage und Verbindungen der Luftsäcke und ihrer Divertikel. Die Schilderung der Atembewegungen des Vogelrumpfes ergibt die Grundlage für die Diskussion der Ventilation der Vogellunge. Auf die Darstellung des Aufbaus der Parabronchien, der funktionellen Baueinheit für den Gasaustausch in der Vogellunge, sowie ihres Gefäßsystems folgen die Daten über den quantitativen Aufbau des Lungen-Luftsacksystems von Kolibris bis zu Schwänen und ihrer morphometrisch bestimmten Austauschkapazitäten. Anschließend werden die physiologischen Daten über den Gasaustausch in der Vogellunge und den Transport der Atemgase durch das Blut diskutiert und die Kenntnisse über die sensorische und neuronale Steuerung von Atmung und Gasaustausch aufgeführt. Sodann werden die vorhandenen Daten über den qualitativen und quantitativen Aufbau der Flugmuskulatur und des Herz-Kreislaufsystems zusammengestellt und ihre körpergrößenabhängigen Beziehungen und deren funktionelle Konsequenzen diskutiert. Abschließend wird die Evolution der Vögel als hochentwickelter Warmblüter diskutiert, die mit ihren zu Dauerleistung befähigten Schlagfliegern wie vielen Zugvögeln extrem gesteigerte metabolische und lokomotorische Leistungen vollbringen, von denen sich die als Bodenvögel spezialisierten größeren Hühnervögel mit ihrer sehr beschränkten physiologischen Leistungsfähigkeit aber deutlich unterscheiden.
The respiratory apparatus of birds and their locomotory and metabolic efficiency
Summary The structural and functional principles of the avian respiratory apparatus and the differences with respect to the respiratory apparatus of mammals have been well understood from published investigations since 1970 (for review articles see Duncker 1971, 1978a, 1979, 1983, Fedde 1986, Seller 1987, King & McLelland 1989). The various and great structural and functional differences between birds and mammals are often ignored or have only rarely found adequate treatment. In the face of the fundamental structural uniformity of birds, the large differences which exist in the functional efficiency of their respiratory and cardiovascular apparatus are not generally realized. This applies to an even greater extent to their interaction and cooperation with the locomotory apparatus, especially when comparing the well-known domestic fowl with the more rarely examined wild and migratory birds. Migratory birds are vertebrates whose respiratory, cardiovascular und locomotory apparatus are capable of the highest sustainable effort. In contrast, the physiology of larger fowl-like birds is not designed for the purpose of hard and sustained exercise, but in accordance with their anaerobically performed short escape flight, the capacity of their cardiovascular and respiratory systems is greatly reduced. Fowl-like birds are therefore suitable only to a very limited extent to afford a functional understanding of avian construction. With this in mind the present article reviews the structure of the respiratory apparatus of birds with its important qualitative and quantitative structural and functional characteristics and the functionally important and correlated aspects of the cardiovascular and locomotory systems. Against this background these avian systems are compared with the functional characteristics of the corresponding mammalian systems.The lung air sac system of birds is related to the special construction of the avian trunk and the highly differentiated septation of the body cavity of birds (Fig. 1; Duncker 1971, 1979). The construction of the trunk wall and the septation of the body cavity are responsible for the volume constancy of the pleural cavity during all respiratory movements, thus establishing the necessary structural conditions for the development of the rigid parabronchial lung. Only under these conditions can the parabronchial air capillaries remain extended and air-filled. The ventilation of this rigid avian lung is achieved by the volume changes of the air sacs, whereby the air flow through the parabronchi is directed aerodynamically. The relative rigidity of the avian trunk with its highly specialized articulations between the spinal column, which is more or less immobile, and the ribs and the sternum enables large excursions for the breathing movements so that ventilation of the air sacs can occur with a large amplitude and at minimum pressure differences. By virtue of the large volume elasticity (compliance) of the air sacs the respiratory apparatus of birds works as a low-pressure system. In addition, owing to the special construction of the shoulder girdle of birds as well as to the arrangement of the large flight muscles and the air sac diverticula between the cranial shoulder girdle and the frontal thorax, complete dissociation of respiratory and flight movements can result, which allows birds to fly and to breath with different, even changing frequencies, which are related specifically to body size (Fig. 5; Berger & Hart 1974).In contrast to this avian construction, the mammalian trunk, especially in small to mediumsized mammals, possesses a strongly elastic thorax and a highly pliant lumbar vertebral column, which result in a coupling between locomotory and respiratory movements. The thoracic cage and the cervical and thoracic vertebral column represent the crucial origins for the musculature of the shoulder girdle including its highly mobile scapula. The extensive movements of the lumbar vertebral column are substantial for the locomotory movements of the hind limb. Owing to its small volume elasticity (compliance) and powerful retractile forces, the broncho-alveolar mammalian lung requires larger pressure gradients for full inspiration. Thus, the thorax musculature and a muscularized diaphragm are well developed. In addition to the performance of its inspiratory movements, the diaphragm must also counteract the high intraabdominal pressures, which are an inevitable consequence of the extensive movements of the lumbar vertebral column and the active abdominal muscles, especially during rapid locomotion. Thus, the body cavities of mammals including the pleural cavity are high-pressure systems, which have multiple, not yet investigated effects on the structure and function of different organ systems.Just as the structure and function of the lung air sac apparatus of birds differ fundamentally from the lungs of mammals, the ontogenetic development of the respiratory apparatuses of these two classes are also basically different. In viviparous mammals the lung develops similarly to all lungs of amniotes secreting pulmonary fluid, which fills the lumina of the developing bronchial tree including its respiratory portion. With the onset of respiratory movements in the late embryological/fetal development, this pulmonary fluid comes into partial exchange with the amniotic fluid. During parturition, a portion of the pulmonary fluid is squeezed out by the compression of the fetus. The remaining pulmonary fluid, which is sucked into the terminal ends of the respiratory bronchial tree by the first breath, will be resorbed in the first few hours of life by active transport of the alveolar epithelium and the endothelium of the alveolar capillaries. Thus, the mammalian lung, which has developed a thin exchange surface in the sacculi or alveoli of the respiratory bronchial tree, can aerate most of the exchange surface with the first breath at birth so that it can instantly take over the function of gas exchange from the placenta (Duncker 1990).The avian lung and its principal air sacs develop in the embryo, which is emersed in the amniotic fluid of the egg. Similarly, the lumina of the growing bronchial system are filled with pulmonary fluid. Towards the end of the incubation period the air capillaries start to sprout from the tubuli of the fluid-filled anlagen of the parabronchi between the surrounding blood capillaries. One to three days before hatching, after having swallowed the remaining amniotic fluid, and initiated regular breathing movements, the chick perforates the membrane into the air chamber of the egg (Duncker 1978b, Piiper 1978). Thus, not only the primary and secondary bronchi of the lung and the large air sacs are ventilated, but also the lumina of the parabronchi. The parabronchial air capillaries, which continue growing and sprouting, are filled with pulmonary fluid, which is now absorbed by the epithelium of the air capillaries and the endothelium of the blood capillaries. Depending upon the size of the egg and the duration of the incubation, the air capillaries are completely air-filled after one to two days. With this ventilation and the increasing filling of the air capillaries with air, they progressively assume the gas exchange function, which up to this time has been carried out by the chorioallantoic membrane. The latter is closely attached to the inside of the shell membrane. At the end of this process the embryo hatches. As early as in the embryological development the pleural cavities maintain volume constancy during all respiratory and body movements. The rigid lungs, which grow together with the pleural cavity walls during their embryological development, attain their gas exchange ability after ventilation of the bronchial system only through the resorption of the pulmonary fluid by the epithelium of the air capillaries. The avian lung therefore can only attain its functional capacity for gas exchange by a temporal overlapping of gas exchange by the chorioallantoic membrane with the respiration of air by the lung, which is only possible in a hard-shelled egg. Thus, the highly differentiated, non-inflatable lung structure in birds is inevitably bound to development in a hard-shelled egg (Duncker 1978b).All birds possess a respiratory apparatus that in principle is comparably constructed. They differ vastly, however, in the extent to which the diffusion capacity of their lungs is developed and thus in their metabolic and locomotory efficiency. Those capable of sustained, efficient flight, e.g. hummingbirds to large migratory birds, possess lungs with an exchange capacity that is higher than that of comparably large mammals by a factor of 6 to 8 (Fig. 27). The relative weight of the heart of birds and their cardio-vascular transport capacity are correspondingly larger than in comparable mammals and they have a somewhat larger relative blood volume (Duncker & Güntert 1985). By virtue of this construction, sustainably flying birds can supply their flight musculature, which consists to a large extent or completely of aerobic muscle fibers, which are sufficient for a continuous flapping type flight activity. However, a crucial body-size relationship arises within these functional interdependencies, since the hearts of larger animals can only pump a relatively smaller blood volume per time unit owing to the size-dependent maximum pulse rate. Accordingly, large ducks, geese and swans adapt to these scale problems by a reduction in their relative flight muscle mass, which entailes them using a longer time for take-off with violent flapping of their wings (Fig. 28). Large water birds can perform such a long take-off only on water, out of reach of preying terrestrial hunters.Large land birds, like the large fowl-like birds, owe their survival to the fact that they can save themselves from stalking hunters by a direct lifting flight, in order to escape into a tree or by sweeping off to a safe distance. For a direct lifting flight, however, a flight muscle mass of at least 20% of their total body weight is necessary. Larger sustainably flying birds had to reduce their aerobic, red flight musculature to 13–12% of their total body mass in accordance with the described body-size dependent cardio-vascular blood transport capacity. Based on these scaling interdependencies, the medium- to large-sized fowl-like birds could not differentiate aerobic fibers in their flight musculature. Because of the requirement that flight musculature must amount to 20% of body weight for lifting stroke flight, they were able to differentiate their flight muscles only as anaerobic, white fibers and thus they can fly strongly but fatigue very quickly (Fig. 28). Accordingly, the heart and circulatory system has also differentiated to the physiological needs of the flight musculature. Thus, the size of the heart and the cardio-vascular transport capacity of larger fowl-like birds are reduced to half of or less than the heart size and transport capacity of comparably large sustainably flying birds, and they possess an even more greatly reduced diffusion capacity of their lungs. Medium-sized and large fowl-like birds passed up the development of the ability for sustainable higher metabolic permormance during their very special evolution towards a more terrestrially based, running bird with short escape flight. The fowl-like birds, adapted very well to their specific habitat, therefore are not an appropiate example of a typical bird with the ability for long-term, flapping flight and high metabolic achievement.
  相似文献   

5.
1. The energy required for sustained physical activity in flying and running birds is obtained from fatty acids mobilized from adipose stores under the influence of hormones. There is some evidence that glucagon, insulin and growth hormone may be involved in this process. 2. Energy expenditure can increase up to 14 times and 12 times resting values in flying and running birds, respectively. Energy expenditure varies only slightly over the normal range of flight speeds in individual species, but in running birds there is a linear correlation between oxygen consumption and speed. The slope of this relationship is an inverse function of body weight and indicates the energy cost of transport in ml O2.kg-1.m-1. 3. Increased oxygen demands by the working muscles are met by increased ventilation and circulation. Increased oxygen delivery by the blood is achieved by rises in cardiac output and oxygen extraction. Cardiac stroke volume changes relatively little and the increased cardiac output results mainly from an increase in heart rate. Regional blood distribution during exercise may be determined not only by the demands of the locomotory muscles but also by the need to increase heat loss from the skin and respiratory tract. 4. Ventilatory movements during flight are frequently synchronized in a I:I fashion with wing movements. Increased ventilation during flight and running may be stimulated, not only by the need for increased gas exchange, but also in order to raise heat loss by respiratory evaporation. Thermal hyperventilation carries a risk of CO, washout from the lungs and consequent blood alkalosis. The risk is minimized in some species by appropriate alterations in the rate and depth of breathing, which help to confine excess ventilation to the respiratory dead space. 5. Metabolic heat produced during exercise is either lost from the respiratory linings and the skin, or stored by the body with a resultant rise in body temperature. Changes in peripheral blood perfusion and active regulation of the feathers may assist cutaneous heat loss. Respiratory evaporation usually accounts for less than 30% of the total heat loss, even at high air temperatures, and becomes progressively less efficient at higher exercise intensities. At high air temperatures and high exercise intensities, most of the metabolic heat is stored, and exercise duration is limited as the body temperature approaches the upper lethal limit.  相似文献   

6.
The respiratory system of insects has evolved to satisfy the oxygen supply during rest and energetically demanding processes such as locomotion. Flapping flight in particular is considered a key trait in insect evolution and requires an increase in metabolic activity of 10-15-fold the resting metabolism. Two major trade-offs are associated with the extensive development of the tracheal system and the function of spiracles in insects: the risk of desiccation because body water may leave the tracheal system when spiracles open for gas exchange and the risk of toxic tracheal oxygen levels at low metabolic activity. In resting animals there is an ongoing debate on the function and evolution of spiracle opening behavior, focusing mainly on discontinuous gas exchange patterns. During locomotion, large insects typically satisfy the increased respiratory requirements by various forms of ventilation, whereas in small insects such as Drosophila diffusive processes are thought to be sufficient. Recent data, however, have shown that during flight even small insects employ ventilatory mechanisms, potentially helping to balance respiratory currents inside the tracheal system. This review broadly summarizes our current knowledge on breathing strategies and spiracle function in the genus Drosophila, highlighting the gas exchange strategies in resting, running and flying animals.  相似文献   

7.
Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the respiratory organs of nonavian theropod dinosaurs and the lung-air sac system of birds appear to have evolved. However, many fundamental aspects of the evolution, development, and even the structure and function of the avian respiratory system still remain uncertain.  相似文献   

8.
We studied the lung diffusion parameters of two species of birds and two species of mammals to explore how structural and functional features may be paralleled by differences in life style or phylogenetic origin. We used two fast-flying species (one mammal and one bird), one running mammal and one bird species that flies only occasionally as models. The harmonic mean thickness of the air-blood barrier was very thin in the species we studied. An exception was the Chilean tinamou Notoprocta perdicaria, which only flies occasionally. It showed an air-blood barrier as thick as that of flightless Galliformes. We found that the respiratory surface density was significantly greater in flying species compared to running species. The estimated values for the oxygen diffusion capacity, DtO2 follow the same pattern: the highest values were obtained in the flying species, the bat and the eared dove. The lowest value was in N. perdicaria. Our findings suggest that the studied species show refinements in their morphometric lung parameters commensurate to their energetic requirements as dictated by their mode of locomotion, rather than their phylogenetic origin. The air-blood barrier appears to be thin in most birds and small mammals, except those with low energetic requirements such as the Chilean tinamou. In the species we studied, the respiratory surface density appears to be the factor most responsive to the energetic requirements of flight.  相似文献   

9.
In partial liquid ventilation (PLV), perfluorocarbon (PFC) acts as a diffusion barrier to gas transport in the alveolar space since the diffusivities of oxygen and carbon dioxide in this medium are four orders of magnitude lower than in air. Therefore convection in the PFC layer resulting from the oscillatory motions of the alveolar sac during ventilation can significantly affect gas transport. For example, a typical value of the Péclet number in air ventilation is Pe approximately 0.01, whereas in PLV it is Pe approximately 20. To study the importance of convection, a single terminal alveolar sac is modeled as an oscillating spherical shell with gas, PFC, tissue and capillary blood compartments. Differential equations describing mass conservation within each compartment are derived and solved to obtain time periodic partial pressures. Significant partial pressure gradients in the PFC layer and partial pressure differences between the capillary and gas compartments (P(C)-Pg) are found to exist. Because Pe> 1, temporal phase differences are found to exist between P(C)-Pg and the ventilatory cycle that cannot be adequately described by existing non-convective models of gas exchange in PLV The mass transfer rate is nearly constant throughout the breath when Pe>1, but when Pe<1 nearly 100% of the transport occurs during inspiration. A range of respiratory rates (RR), including those relevant to high frequency oscillation (HFO) +PLV, tidal volumes (V(T)) and perfusion rates are studied to determine the effect of heterogeneous distributions of ventilation and perfusion on gas exchange. The largest changes in P(C)O2 and P(C)CO2 occur at normal and low perfusion rates respectively as RR and V(T) are varied. At a given ventilation rate, a low RR-high V(T) combination results in higher P(C)O2, lower P(C)CO2 and lower (P(C)-Pg) than a high RR-low V(T) one.  相似文献   

10.
Panting and acid-base regulation in heat stressed birds   总被引:1,自引:0,他引:1  
1. Studies in respiratory physiology and acid-base balance of panting birds exposed to high Tas show that flying as well as nonflying birds can use the respiratory system simultaneously for gas exchange and evaporative cooling. 2. The present study proves that well acclimated hand-reared birds can effectively regulate a normal CO2 level and acid-base status in arterial blood, when exposed to extremely high temperatures (50-60 degrees C). 3. In many birds practising simple or "flush-out" panting, the dead space can be reduced to a volume which is estimated to be approx 15% the volume of the respiratory tract. 4. These two modes of ventilation, shallow and high-rate, restricted to the nonrespiratory surfaces, may ensure the avoidance of CO2-washout and limit lung ventilation to the volumes needed for oxygen consumption. 5. This view supports earlier theories, suggesting the existence of physiological shunt mechanisms which operate during thermal panting in birds.  相似文献   

11.
The energetic cost of flight in a wind-tunnel was measured at various combinations of speed and flight angle from two species of bats whose body masses differ by almost an order of magnitude. The highest mean metabolic rate per unit body mass measured from P. hastatus (mean body mass, 0.093 kg) was 130.4 Wkg-1, and that for P. gouldii (mean body mass, 0.78 kg) was 69.6 Wkg-1. These highest metabolic rates, recorded from flying bats, are essentially the same as those predicted for flying birds of the same body masses, but are from 2.5 to 3.0 times greater than the highest metabolic rates of which similar-size exercising terrestrial mammals appear capable. The lowest mean rate of energy utilization per unit body mass P. hastatus required to sustain level flight was 94.2 Wkg-1 and that for P. gouldii was 53.4 Wkg-1. These data from flying bats together with comparable data for flying birds all fall along a straight line when plotted on double logarithmic coordinates as a function of body mass. Such data show that even the lowest metabolic requirements of bats and birds during level flight are about twice the highest metabolic capabilities of similar-size terrestrial mammals. Flying bats share with flying birds the ability to move substantially greater distance per unit energy consumed than walking or running mammals. Calculations show that P. hastatus requires only one-sixth the energy to cover a given distance as does the same-size terrestrial mammal, while P. gouldii requires one-fourth the energy of the same-size terrestrial mammal. An empirically derived equation is presented which enables one to make estimates of the metabolic rates of bats and birds during level flight in nature from body mass data alone. Metabolic data obtained in this study are compared with predictions calculated from an avian flight theory.  相似文献   

12.
The incomplete double circulation of air-breathing fishes and lungfishes, amphibians, reptiles and embryonic birds and mammals has been analyzed using a simplified mode comprising the intra- and extracardiac shunts and compartments for the gas exchange (gills, lungs, skin, etc.) as well as systemic tissue gas exchange. The intracardiac shunting is defined and given common symbols for all species of animals analyzed. Two types of equations, fluid-flow and mass-flow equations, are derived for each model, which are solved to give shunting rate as a function of blood O2 content of the principal cardiac compartments and vessels. The model analysis not only offers possibility for an overall average evaluation of central shunts, but also suggests which blood samples must be determined for evaluation of the shunt patterns.  相似文献   

13.
The structure and function of the nasal conchae of extant reptiles, birds, and mammals are reviewed, and the relationships to endothermy of the mammalian elements are examined. Reptilian conchae are relatively simple, recurved structures, which bear primarily sensory (olfactory) epithelium. Conversely, the conchae, or turbinates, of birds and mammals are considerably more extensive and complex, and bear, in addition, nonsensory (respiratory) epithelium. Of the mammalian turbinates, only the exclusively respiratory maxilloturbinal has a clear functional relationship with endothermy, as it reduces desiccation associated with rapid and continuous pulmonary ventilation. The other mammalian turbinates principally retain the primitive, olfactory function of the nasal conchae. The maxilloturbinates are the first reliable morphological indicator of endothermy that can be used in the fossil record. In fossil mammals and mammallike reptiles, the presence and function of turbinates are most readily revealed by the ridges by which they attach to the walls of the nasal cavity. Ridges for olfactory turbinals are located posterodorsally, away from the main flow of respiratory air, whereas those of the respiratory maxilloturbinals are situated in the anterolateral portion of the nasal passage, directly in the path of respired air. The maxilloturbinal is also characterized by its proximity to the opening of the nasolacrimal canal. Posterodorsal ridges, for olfactory turbinals, have long been recognized in many mammallike reptiles, including early forms such as pelycosaurs. However, ridges for respiratory turbinals have not been identified previously in this group. In this paper, the presence of anterolateral ridges, which most likely supported respiratory turbinals, is reported in the primitive therocephalian Glanosuchus and in several cynodonts. The presence of respiratory turbinals in these advanced mammallike reptiles suggests that the evolution of “mammalian” oxygen consumption rates may have begun as early as the Late Permian and developed in parallel in therocephalians and cynodonts. Full mammalian endothermy may have taken as much as 40 to 50 million yr to develop.  相似文献   

14.
Delphinids produce tonal whistles shaped by vocal learning for acoustic communication. Unlike terrestrial mammals, delphinid sound production is driven by pressurized air within a complex nasal system. It is unclear how fundamental whistle contours can be maintained across a large range of hydrostatic pressures and air sac volumes. Two opposing hypotheses propose that tonal sounds arise either from tissue vibrations or through actual whistle production from vortices stabilized by resonating nasal air volumes. Here, we use a trained bottlenose dolphin whistling in air and in heliox to test these hypotheses. The fundamental frequency contours of stereotyped whistles were unaffected by the higher sound speed in heliox. Therefore, the term whistle is a functional misnomer as dolphins actually do not whistle, but form the fundamental frequency contour of their tonal calls by pneumatically induced tissue vibrations analogous to the operation of vocal folds in terrestrial mammals and the syrinx in birds. This form of tonal sound production by nasal tissue vibrations has probably evolved in delphinids to enable impedance matching to the water, and to maintain tonal signature contours across changes in hydrostatic pressures, air density and relative nasal air volumes during dives.  相似文献   

15.
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s?1, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.  相似文献   

16.
Brown C  Pilny AA 《Lab animal》2006,35(7):23-24
Air sac cannulas are indicated in birds with upper respiratory obstruction or for ventilation during surgical procedures involving the head and neck. Proper technique, knowledge of potential complications, and an understanding of the indications for air sac tube placement are important for scientists, veterinarians, and technicians who work with birds.  相似文献   

17.
The analysis of allometric dependence of energy expenditure on body mass among reptiles, birds and mammals has shown that standard metabolic rate of reptiles when they are warmed up to the temperature of homoiothermic animals is an order of magnitude lower than that of birds and mammals. Basal metabolism is originated as special feature historically related to the metabolism during active behavior, rather than thermal regulation. Facultative endothermy was not advantageous for large animals because of long time needed to warm up the body. The ancestors of birds and animals escaped negative consequences of van't-Hoff equation by choosing constant body temperature. Heat conductivity of reptile's covers is so great, that it cannot keep endogenous warm of resting animal at any temperature of the body. Reptile "dressed" in covers of bird or mammal would be able to keep warm under conditions of maximal aerobic muscular activity and body temperature similar to that of homoiothermic animals. The base of chemical thermoregulation in birds and mammals is a thermoregulatory muscle tonus which remains unknown. One can suppose that during evolution of birds and mammals the saltation-liked origin of endothermy "fixed" the level of metabolism typical for running reptile and transformed in into the basal metabolism. This event took place at the cell and tissue level. The absence of palaeontological evidences and intermediate forms among recent species does not allow easy understanding of homoiothermy origin.  相似文献   

18.
Avian and mammalian endothermy results from elevated rates of resting, or routine, metabolism and enables these animals to maintain high and stable body temperatures in the face of variable ambient temperatures. Endothermy is also associated with enhanced stamina and elevated capacity for aerobic metabolism during periods of prolonged activity. These attributes of birds and mammals have greatly contributed to their widespread distribution and ecological success. Unfortunately, since few anatomical/physiological attributes linked to endothermy are preserved in fossils, the origin of endothermy among the ancestors of mammals and birds has long remained obscure. Two recent approaches provide new insight into the metabolic physiology of extinct forms. One addresses chronic (resting) metabolic rates and emphasizes the presence of nasal respiratory turbinates in virtually all extant endotherms. These structures are associated with recovery of respiratory heat and moisture in animals with high resting metabolic rates. The fossil record of nonmammalian synapsids suggests that at least two Late Permian lineages possessed incipient respiratory turbinates. In contrast, these structures appear to have been absent in dinosaurs and nonornithurine birds. Instead, nasal morphology suggests that in the avian lineage, respiratory turbinates first appeared in Cretaceous ornithurines. The other approach addresses the capacity for maximal aerobic activity and examines lung structure and ventilatory mechanisms. There is no positive evidence to support the reconstruction of a derived, avian-like parabronchial lung/air sac system in dinosaurs or nonornithurine birds. Dinosaur lungs were likely heterogenous, multicameral septate lungs with conventional, tidal ventilation, although evidence from some theropods suggests that at least this group may have had a hepatic piston mechanism of supplementary lung ventilation. This suggests that dinosaurs and nonornithurine birds generally lacked the capacity for high, avian-like levels of sustained activity, although the aerobic capacity of theropods may have exceeded that of extant ectotherms. The avian parabronchial lung/air sac system appears to be an attribute limited to ornithurine birds.  相似文献   

19.
Simple models are presented of the energetics of annual migrationand of central place foraging, taking account of the speed andenergy cost of the journeys. They are applied to insects, fish,birds and mammals of a wide range of sizes, which travel byflapping or soaring flight, by swimming or by running. It isshown that annual migrations of several thousand kilometresare unlikely to be beneficial except for marine mammals andflying birds. Marine mammals and large flying birds are theanimals most likely to be able to benefit from foraging oververy large distances. Observed migration and foraging rangesgenerally lie within the limits predicted by the models.  相似文献   

20.

Background

Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence.

Methodology/Principal Findings

We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (“stomach ribs”), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax.

Conclusions/Significance

We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds:(1) Phase I—Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic.(2) Phase II—Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract with compliant air sacs, in turn, suggests the presence of rigid, dorsally attached lungs with flow-through ventilation.(3) Phase III—Evolution of a primitive costosternal pump in maniraptoriform theropods before the close of the Jurassic.(4) Phase IV—Evolution of an advanced costosternal pump in maniraptoran theropods before the close of the Jurassic.In addition, we conclude:(5) The advent of avian unidirectional lung ventilation is not possible to pinpoint, as osteological correlates have yet to be identified for uni- or bidirectional lung ventilation.(6) The origin and evolution of avian air sacs may have been driven by one or more of the following three factors: flow-through lung ventilation, locomotory balance, and/or thermal regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号