首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trabecular meshwork (TM), a specialized eye tissue, is a major site for regulation of the aqueous humor outflow. Malfunctioning of this tissue is believed to be responsible for development of glaucoma, a blinding disease. Myocilin is a gene linked to the most common form of glaucoma. The protein product has been localized to both intra and extracellular sites, but its function still remains unclear. This study was to determine whether extracellular myocilin presented in the matrix affects adhesion, morphology, and migratory and phagocytic activities of human TM cells in culture. Cell adhesion assays indicated that TM cells, while adhering readily on fibronectin, failed to attach on recombinant myocilin purified from bacterial cultures. Adhesion on fibronectin was also compromised by myocilin in a dose dependent manner. Myocilin in addition triggered TM cells to assume a stellate appearance with broad cell bodies and microspikes. Loss of actin stress fibers and focal adhesions was observed. TM cell migration on fibronectin/myocilin to scratched wounds was reduced compared to fibronectin controls. Myocilin, however, had little impact on phagocytic activities of TM cells. Cell attachment on fibronectin and migration of corneal fibroblasts, a control cell type, were not altered by myocilin. These results demonstrate that extracellular myocilin elicits anti-adhesive and counter-migratory effects on TM cells. Myocilin in the matrix of tissues could be exerting a similar influence on TM cells in vivo, impacting the flexibility and resilience required for maintenance of the normal aqueous outflow.  相似文献   

2.
Myocilin is a gene linked to the most common form of glaucoma, a major blinding disease. The trabecular meshwork (TM), a specialized eye tissue, is believed to be involved, at least in part, in the development of glaucoma. The myocilin expression is known to be up-regulated by glucocorticoids in TM cells, and an altered myocilin level may be the culprit in conditions such as corticosteroid glaucoma. Wild type myocilin, when transfected into cultured human TM cells, induced a dramatic loss of actin stress fibers and focal adhesions. Myocilin transfectants displayed a heightened sensitivity to trypsin. Adhesion to fibronectin, collagens, and vitronectin was compromised. The fibronectin deposition and the levels of fibronectin protein and mRNA were also reduced in myocilin transfectants. The fibronectin deposition could be restored by treatment with lysophosphatidic acid, a Rho stimulator. Assays further revealed that upon myocilin overexpression, the activity of RhoA was diminished, whereas the cAMP level and the protein kinase A (PKA) activity were augmented. Myocilin protein did not affect actin polymerization. The collapse of actin stress fibers and increased trypsin sensitivity from myocilin transfection could be reverted by co-expression of constitutively active RhoA or by treatment with PKA inhibitor H-89. The PKA activity, however, was not modified by co-expression of either constitutively active or dominant negative RhoA. These results demonstrate that myocilin has a de-adhesive activity and triggers signaling events. cAMP/PKA activation and the downstream Rho inhibition are possible mechanisms by which myocilin in overabundance may lead to TM cell or tissue damage.  相似文献   

3.
The Heparin (Hep) II-binding domain of fibronectin regulates the formation of focal adhesions and actin stress fibers and hence plays an important role in cell spreading, migration, and fibronectin fibrillogenesis. Using human skin fibroblast cultures, we demonstrate that alternative splicing of the neighboring IIICS domain may regulate the activities of the Hep II domain in cell spreading and fibronectin fibrillogenesis. Recombinant Hep II domains, adjacent to either the IIICS domain or the H89 splice variant that contains the amino-terminal sequence of the IIICS domain, blocked fibronectin fibrillogenesis and required sulfated proteoglycans to mediate cell spreading. If the Hep II domain was adjacent to either the H0 or H95 splice variants, which both lack the amino terminus of the IIICS domain, fibrillogenesis was not inhibited and cell spreading was independent of a sulfated proteoglycan-mediated mechanism. The effect of the splice variants on the Hep II domain could be mimicked using a Hep II domain that contained only 6 amino acids from the III(15) repeat or 10 amino acids from the IIICS domain suggesting that sequences proximal to the III(14) repeat determined the role of the Hep II domain in these processes. We propose that alternative splicing of the IIICS domain modulates interactions between heparan sulfate proteoglycans and the Hep II domain and that this serves as a mechanism to control the biological activities of fibronectin.  相似文献   

4.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

5.
The integrin family of cell adhesion receptors are important for a diverse set of biological responses during development. Although many integrins have been shown to engage a similar set of cytoplasmic effector proteins in vitro, the importance of these proteins in the biological events mediated by different integrin receptors and ligands is uncertain. We have examined the role of one of the best-characterized integrin effectors, the focal adhesion protein paxillin, by disruption of the paxillin gene in mice. Paxillin was found to be critically involved in regulating the development of mesodermally derived structures such as heart and somites. The phenotype of the paxillin(-/-) mice closely resembles that of fibronectin(-/-) mice, suggesting that paxillin is a critical transducer of signals from fibronectin receptors during early development. Paxillin was also found to play a critical role in fibronectin receptor biology ex vivo since cultured paxillin-null fibroblasts display abnormal focal adhesions, reduced cell migration, inefficient localization of focal adhesion kinase (FAK), and reduced fibronectin-induced phosphorylation of FAK, Cas, and mitogen-activated protein kinase. In addition, we found that paxillin-null fibroblasts show some defects in the cortical cytoskeleton and cell spreading on fibronectin, raising the possibility that paxillin could play a role in structures distinct from focal adhesions. Thus, paxillin and fibronectin regulate some common embryonic developmental events, possibly due to paxillin modulation of fibronectin-regulated focal adhesion dynamics and organization of the membrane cytoskeletal structures that regulate cell migration and spreading.  相似文献   

6.
Overexpression of myocilin in cultured human trabecular meshwork cells   总被引:3,自引:0,他引:3  
The trabecular meshwork, a specialized eye tissue, is a major site for regulation of the aqueous humor outflow. Malfunctioning of the trabecular meshwork is believed to be responsible for development of glaucoma, a blinding disease. Myocilin is a gene linked to the most common form of glaucoma. Its expression is known to be upregulated by glucocorticoids in trabecular meshwork cells and the altered myocilin level may be the culprit for glaucomatous conditions such as corticosteroid-induced glaucoma. In this study, we examined the influence of myocilin overexpression on the adhesion, spreading, migration, phagocytosis, and apoptosis of human trabecular meshwork cells in culture. When the myocilin expression was increased by 3- to 4-fold, the transfectants showed a dramatic loss of actin stress fibers and focal adhesions. Cell adhesion to fibronectin and spreading were also compromised. Myocilin thus appeared to have a de-adhesive activity, similar to that reported extensively with matricellular proteins. The transfected cells in addition displayed an increased sensitivity to apoptosis. These results demonstrate that overexpression of myocilin renders trabecular meshwork cells in a de-adhesive and vulnerable state. This vulnerability may be the basis for pathologic consequences in subtypes of glaucoma.  相似文献   

7.
ASAP1 (ADP ribosylation factor [ARF]- GTPase-activating protein [GAP] containing SH3, ANK repeats, and PH domain) is a phospholipid-dependent ARF-GAP that binds to and is phosphorylated by pp60(Src). Using affinity chromatography and yeast two-hybrid interaction screens, we identified ASAP1 as a major binding partner of protein tyrosine kinase focal adhesion kinase (FAK). Glutathione S-transferase pull-down and coimmunoprecipitation assays showed the binding of ASAP1 to FAK is mediated by an interaction between the C-terminal SH3 domain of ASAP1 with the second proline-rich motif in the C-terminal region of FAK. Transient overexpression of wild-type ASAP1 significantly retarded the spreading of REF52 cells plated on fibronectin. In contrast, overexpression of a truncated variant of ASAP1 that failed to bind FAK or a catalytically inactive variant of ASAP1 lacking GAP activity resulted in a less pronounced inhibition of cell spreading. Transient overexpression of wild-type ASAP1 prevented the efficient organization of paxillin and FAK in focal adhesions during cell spreading, while failing to significantly alter vinculin localization and organization. We conclude from these studies that modulation of ARF activity by ASAP1 is important for the regulation of focal adhesion assembly and/or organization by influencing the mechanisms responsible for the recruitment and organization of selected focal adhesion proteins such as paxillin and FAK.  相似文献   

8.
Myocilin, a secreted glycoprotein of the olfactomedin family, is constitutively expressed in podocytes of the rat kidney and induced in mesangial cells during mesangioproliferative glomerulonephritis. As myocilin has been found to be associated with fibrillar components of the extracellular matrix, and adhesive properties have been shown for other members of the olfactomedin family, we hypothesized that myocilin might play a role in cell-matrix interactions in the glomerulus. To elucidate functional properties of myocilin, recombinant myocilin was expressed in 293 EBNA cells and purified by Ni-chelate and heparin chromatography. Culture plates were coated with myocilin, and primary rat mesangial cells and cells from an immortal murine podocyte cell line were seeded onto the plates in serum free conditions. Both cell types showed concentration-dependant attachment to myocilin, an effect that was statistically significant and could be blocked with specific antibodies. When compared to equal amounts of fibronectin or collagen 1, myocilin was less effective in promoting substrate adhesion. Synergistic effects in substrate adhesion were observed when myocilin was added to low concentrations of fibronectin. Twenty-five percent of cells that had attached to myocilin substrates showed spreading and expressed focal contacts which were labeled by vinculin/phalloidin staining. Comparable findings were observed when human or murine trabecular meshwork cells were seeded on myocilin substrates. Adhesive properties of myocilin required multimer formation, and were not observed when culture plates were coated with a C-terminal fragment of myocilin, containing the olfactomedin domain. We conclude that myocilin promotes substrate adhesion of podocytes and mesangial cells, and might contribute to cell-matrix adhesion of both cell types in vivo.  相似文献   

9.
Co-signaling events between integrins and cell surface proteoglycans play a critical role in the organization of the cytoskeleton and adhesion forces of cells. These processes, which appear to be responsible for maintaining intraocular pressure in the human eye, involve a novel cooperative co-signaling pathway between alpha5beta1 and alpha4beta1 integrins and are independent of heparan sulfate proteoglycans. Human trabecular meshwork cells isolated from the eye were plated on type III 7-10 repeats of fibronectin (alpha5beta1 ligand) in the absence or presence of the heparin (Hep) II domain of fibronectin. In the absence of the Hep II domain, cells had a bipolar morphology with few focal adhesions and stress fibers. The addition of the Hep II domain increased cell spreading and the numbers of focal adhesions and stress fibers. Cell spreading and stress fiber formation were not mediated by heparan sulfate proteoglycans because treatment with chlorate, heparinase, or soluble heparin did not prevent Hep II domain-mediated cell spreading. Cell spreading and stress fiber formation were mediated by alpha4beta1 integrin because soluble anti-alpha4 integrin antibodies inhibited Hep II domain-mediated cell spreading and soluble vascular cell adhesion molecule-1 (alpha4beta1 ligand)-induced cell spreading. This is the first demonstration of the Hep II domain mediating cell spreading and stress fiber formation through alpha4beta1 integrin. This novel pathway demonstrates a cooperative, rather than antagonistic, role between alpha5beta1 and alpha4beta1 integrins and suggests that interactions between the Hep II domain and alpha4beta1 integrin could modulate the strength of cytoskeleton-mediated processes in the trabecular meshwork of the human eye.  相似文献   

10.
Myocilin is a broadly expressed protein that when mutated uniquely causes glaucoma. While no function has been ascribed to explain focal disease, some properties of myocilin are known. Myocilin is a cytoplasmic protein that also localizes to vesicles specifically as part of a large membrane-associated complex with properties similar to the SNARE machinery that function in vesicle fusion. Its role in vesicle dynamics has not been detailed, however myocilin intersects with the endocytic compartment at the level of the multivesicular body. Since internalized GPCRs are sorted in the multivesicular body, we investigated whether myocilin functions in ligand-dependent GPR143 endocytosis. Using recombinant systems we found that the kinetics of myocilin recruitment to biotinylated membrane proteins was similar to that of arrestin-3. We also co-localized myocilin with GPR143 and Arrestin-2 by confocal microscopy. However, wild-type myocilin differed significantly in its association kinetics and co-localization with internalized proteins from mutant myocilin (P370L or T377M). Moreover, we found that myocilin bound to the cytoplasmic tail of GPR143, an interaction mediated by its amino terminal helix-turn-helix domain. Hydrodynamic analyses show that the myocilin-GPR143 protein complex is >158 kD and stable in 500 mM KCl, but not 0.1% SDS. Collectively, data indicate that myocilin is recruited to the membrane compartment, interacting with GPCR proteins during ligand-mediated endocytosis and that GPCR signaling underlies pathology in myocilin glaucoma.  相似文献   

11.
Myocilin is a 55-57-kDa protein that is a member of the olfactomedin protein family. It is expressed in the cornea, sclera and trabecular network of the eye, myelinated peripheral nerves, heart, skeletal muscle, trachea and other tissues. Myocilin binds to a domain of fibronectin, type IV collagen and laminen in the trabecular meshwork of the eye, and its expression is influenced by transforming growth factor beta. Because these extracellular matrix components also are common in the intervertebral disc, the objective of our study was to determine whether the matricellular protein myocilin could be detected in the human or sand rat intervertebral disc using immunohistochemistry and to assess its localization. We investigated 16 specimens of human disc tissue and discs from six sand rats. Three human disc cell cultures grown in three-dimensional culture also were evaluated. Immunocytochemical annulus analysis showed the presence of myocilin within the disc cell cytoplasm in some, but not all, cells. Extracellular matrix in both the human and sand rat disc was negative for myocilin localization. Myocilin is believed to play a role in cell-cell adhesion and/or signaling. Myocilin may have such functions within the disc cell population in a manner similar to tenascin, SPARC and thrombospondin, which are other matricellular proteins recently shown to be present in the disc.  相似文献   

12.
Myocilin is a 55-57-kDa protein that is a member of the olfactomedin protein family. It is expressed in the cornea, sclera and trabecular network of the eye, myelinated peripheral nerves, heart, skeletal muscle, trachea and other tissues. Myocilin binds to a domain of fibronectin, type IV collagen and laminen in the trabecular meshwork of the eye, and its expression is influenced by transforming growth factor beta. Because these extracellular matrix components also are common in the intervertebral disc, the objective of our study was to determine whether the matricellular protein myocilin could be detected in the human or sand rat intervertebral disc using immunohistochemistry and to assess its localization. We investigated 16 specimens of human disc tissue and discs from six sand rats. Three human disc cell cultures grown in three-dimensional culture also were evaluated. Immunocytochemical annulus analysis showed the presence of myocilin within the disc cell cytoplasm in some, but not all, cells. Extracellular matrix in both the human and sand rat disc was negative for myocilin localization. Myocilin is believed to play a role in cell-cell adhesion and/or signaling. Myocilin may have such functions within the disc cell population in a manner similar to tenascin, SPARC and thrombospondin, which are other matricellular proteins recently shown to be present in the disc.  相似文献   

13.
Myocilin is a 55-57-kDa protein that is a member of the olfactomedin protein family. It is expressed in the cornea, sclera and trabecular network of the eye, myelinated peripheral nerves, heart, skeletal muscle, trachea and other tissues. Myocilin binds to a domain of fibronectin, type IV collagen and laminen in the trabecular meshwork of the eye, and its expression is influenced by transforming growth factor beta. Because these extracellular matrix components also are common in the intervertebral disc, the objective of our study was to determine whether the matricellular protein myocilin could be detected in the human or sand rat intervertebral disc using immunohistochemistry and to assess its localization. We investigated 16 specimens of human disc tissue and discs from six sand rats. Three human disc cell cultures grown in three-dimensional culture also were evaluated. Immunocytochemical annulus analysis showed the presence of myocilin within the disc cell cytoplasm in some, but not all, cells. Extracellular matrix in both the human and sand rat disc was negative for myocilin localization. Myocilin is believed to play a role in cell-cell adhesion and/or signaling. Myocilin may have such functions within the disc cell population in a manner similar to tenascin, SPARC and thrombospondin, which are other matricellular proteins recently shown to be present in the disc.  相似文献   

14.
Cell dynamics mediated through cell-extracellular matrix contacts, such as adhesion and motility involve the precise regulation of large complexes of structural and signaling molecules called focal adhesions (FAs). Paxillin is a multi-domain FA adaptor protein containing five amino-terminal paxillin leucine-aspartate repeat (LD) motifs and four carboxyl-terminal Lin-11 Isl-1 and Mec-3 (LIM) domains. The LD motifs support paxillin binding to actopaxin, integrin linked kinase (ILK), FA kinase (FAK), paxillin kinase linker (PKL) and vinculin. Of the LIM domains, LIM2 and 3 comprise the paxillin FA-targeting motif, with phosphorylation of these domains modulating paxillin targeting and cell adhesion to fibronectin (Fn). The identity of the paxillin FA targeting partner remains to be determined; however, the LIM domains mediate interactions with tubulin and the protein-tyrosine phosphatase (PTP)-PEST. PTP-PEST binding requires both LIM3 and 4, whereas, the precise LIM target of tubulin binding is not known. In this report, we demonstrate that the individual paxillin LIM2 and 3 domains support specific binding to tubulin and suggest a potential role for this interaction in the regulation of paxillin sub-cellular compartmentalization. In addition, expression of paxillin molecules with mutations in the tubulin- and PTP-PEST-binding LIM domains differentially impaired Chinese hamster ovary K1 (CHO.K1) cell adhesion and migration to Fn. Perturbation of LIM3 or 4 inhibited adhesion while mutation of LIM2 or 4 decreased cell motility. Interestingly, expression of tandem LIM2-3 inhibited cell adhesion and spreading while LIM3-4 stimulated a well-spread polarized phenotype. These data offer further support for a critical role for paxillin in cell adhesion and motility.  相似文献   

15.
We have examined the role of cell surface glycosaminoglycans in fibronectin-mediated cell adhesion by analyzing the adhesive properties of Chinese hamster ovary cell mutants deficient in glycosaminoglycans. The results of our study suggest that the absence of glycosaminoglycans does not affect the initial attachment and subsequent spreading of these cells on substrata composed of intact fibronectin or a fibronectin fragment containing the primary cell-binding domain. However, in contrast to wild-type cells, the glycosaminoglycan- deficient cells did not attach to substrate composed of a heparin- binding fibronectin fragment. Furthermore, the wild-type but not the glycosaminoglycan-deficient cells formed F-actin-containing stress fibers and focal adhesions on substrata composed of intact fibronectin. We propose, therefore, that cell surface proteoglycan(s) participate in the transmembrane linking of intracellular cytoskeletal components to extracellular matrix components which occurs in focal adhesions.  相似文献   

16.
We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels of RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated fibrillogenesis. Despite the fact that alpha5beta1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of alpha5beta1-mediated but not alphavbeta3-mediated focal contacts. Using chimeras of beta1 and beta3 subunits, we find that the extracellular domain of beta1 controls RhoA activity. By expressing both beta1 and beta3 at high levels, we show that beta1-mediated control of the levels of beta3 is important for the distribution of focal contacts. Our findings demonstrate that the pattern of fibronectin receptors expressed on a cell dictates the ability of fibronectin to stimulate RhoA-mediated organization of cell matrix adhesions.  相似文献   

17.
Cell polarity is critical for cell migration and requires localized signal transduction in subcellular domains. Recent evidence demonstrates that activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) in focal adhesions is essential for cell migration. GIT1 (G‐protein‐coupled receptor kinase‐interacting protein 1) has been shown to bind paxillin and regulate focal‐adhesion disassembly. We have previously reported that GIT1 binds to MEK1 [MAPK (mitogen‐activated protein kinase)/ERK kinase 1] and acts as a scaffold to enhance ERK1/2 activation in response to EGF (epidermal growth factor). In the present study we show that GIT1 associates with ERK1/2 in focal adhesions and this association increases after EGF stimulation. The CC (coiled‐coil) domain of ERK1/2 is required for association with GIT1, translocation to focal adhesions, and cell spreading and migration. Immunofluorescent staining showed that, after EGF stimulation, GIT1 co‐localized with pERK1/2 (phosphorylated ERK1/2) in focal adhesions. The binding of GIT1 and ERK1/2 was functionally important, since transfecting an ERK2 mutant lacking the CC domain [ERK2(del CC)] significantly decreased pERK1/2 translocation to focal adhesions, cell spreading and migration induced by EGF. In summary, the CC domain of ERK1/2 is necessary for binding to GIT1, for ERK1/2 activation in focal adhesions, and for cell spreading and migration.  相似文献   

18.
Integrin-mediated cell adhesion often results in cell spreading and the formation of focal adhesions. We exploited the capacity of recombinant human alpha IIb beta 3 integrin to endow heterologous cells with the ability to adhere and spread on fibrinogen to study the role of integrin cytoplasmic domains in initiation of cell spreading and focal adhesions. The same constructs were also used to analyze the role of the cytoplasmic domains in maintenance of the fidelity of the integrin repertoire at focal adhesions. Truncation mutants of the cytoplasmic domain of alpha IIb did not interfere with the ability of alpha IIb beta 3 to initiate cell spreading and form focal adhesions. Nevertheless, deletion of the alpha IIb cytoplasmic domain allowed indiscriminate recruitment of alpha IIb beta 3 to focal adhesions formed by other integrins. Truncation of the beta 3 subunit cytoplasmic domain abolished cell spreading mediated by alpha IIb beta 3 and also abrogated recruitment of alpha IIb beta 3 to focal adhesions. This truncation also dramatically impaired the ability of alpha IIb beta 3 to mediate the contraction of fibrin gels. In contrast, the beta 3 subunit cytoplasmic truncation did not reduce the fibrinogen binding affinity of alpha IIb beta 3. Thus, the integrin beta 3 subunit cytoplasmic domain is necessary and sufficient for initiation of cell spreading and focal adhesion formation. Further, the beta 3 cytoplasmic domain is required for the transmission of intracellular contractile forces to fibrin gels. The alpha subunit cytoplasmic domain maintains the fidelity of recruitment of the integrins to focal adhesions and thus regulates their repertoire of integrins.  相似文献   

19.
Transient elevations in Ca2+ have previously been shown to promote focal adhesion disassembly and cell motility through an unknown mechanism. In this study, evidence is provided to show that CaMK-II, a Ca2+/calmodulin dependent protein kinase, influences fibroblast adhesion and motility. TIRF microscopy reveals a dynamic population of CaMK-II at the cell surface in migrating cells. Inhibition of CaMK-II with two mechanistically distinct, membrane permeant inhibitors (KN-93 and myr-AIP) freezes lamellipodial dynamics, accelerates spreading on fibronectin, enlarges paxillin-containing focal adhesions and blocks cell motility. In contrast, constitutively active CaMK-II is not found at the cell surface, reduces cell attachment, eliminates paxillin from focal adhesions and decreases the phospho-tyrosine levels of both FAK and paxillin; all of these events can be reversed with myr-AIP. Thus, both CaMK-II inhibition and constitutive activation block cell motility through over-stabilization or destabilization of focal adhesions, respectively. Coupled with the existence of transient Ca2+ elevations and a dynamic CaMK-II population, these findings provide the first direct evidence that CaMK-II enables cell motility by transiently and locally stimulating tyrosine dephosphorylation of focal adhesion proteins to promote focal adhesion turnover.  相似文献   

20.

Background

FAK localization to focal adhesions is essential for its activation and function. Localization of FAK is mediated through the C-terminal focal adhesion targeting (FAT) domain. Recent structural analyses have revealed two paxillin-binding sites in the FAT domain of FAK. To define the role of paxillin binding to each site on FAK, point mutations have been engineered to specifically disrupt paxillin binding to each docking site on the FAT domain of FAK individually or in combination.

Results

These mutants have been characterized and reveal an important role for paxillin binding in FAK subcellular localization and signaling. One paxillin-binding site (comprised of α-helices 1 and 4 of the FAT domain) plays a more prominent role in localization than the other. Mutation of either paxillin-binding site has similar effects on FAK activation and downstream signaling. However, the sites aren't strictly redundant as each mutant exhibits phosphorylation/signaling defects distinct from wild type FAK and a mutant completely defective for paxillin binding.

Conclusion

The studies demonstrate that the two paxillin-binding sites of FAK are not redundant and that both sites are required for FAK function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号