首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Murata  M Kobayashi  S Kawanishi 《Biochemistry》1999,38(24):7624-7629
Nitro derivative (nitro-IQ) of a carcinogenic heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is known to be a potent mutagen as well as IQ, and nitro-IQ is believed to be activated enzymatically by nitroreductase. We investigated nonenzymatic reduction of nitro-IQ by an endogenous reductant NADH and the ability of inducing DNA damage by nitro-IQ. Nitro-IQ caused DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine in the presence of NADH and Cu(II). Catalase and bathocuproine, a Cu(I)-specific chelator, inhibited the DNA damage, suggesting the involvement of H2O2 and Cu(I). Nitro-IQ induced DNA cleavage frequently at thymine and cytosine residues in the presence of NADH and Cu(II). UV-vis spectroscopic study showed that no spectral change of Nitro-IQ and NADH was observed in the absence of Cu(II), while rapid spectral change was observed in the presence of Cu(II), suggesting that Cu(II) mediated redox reaction of nitro-IQ and NADH. These results suggest that nitro-IQ can be reduced nonenzymatically by NADH in the presence of Cu(II), and the redox reaction resulted in oxidative DNA damage due to the copper-oxygen complex, derived from the reaction of Cu(I) with H2O2. We conclude that nonenzymatic reduction of nitro-IQ and resulting in oxidative DNA damage can play a role in carcinogenesis of IQ.  相似文献   

2.
We investigated DNA damage induced by aminoacetone, a metabolite of threonine and glycine. Pulsed-field gel electrophoresis revealed that aminoacetone caused cellular DNA cleavage. Aminoacetone increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in human cultured cells in a dose-dependent manner. The formation of 8-oxodG in calf thymus DNA increased due to aminoacetone only in the presence of Cu(II). DNA ladder formation was observed at higher concentrations of aminoacetone than those causing DNA cleavage. Flow cytometry showed that aminoacetone enhanced the generation of hydrogen peroxide (H2O2) in cultured cells. Aminoacetone caused damage to 32P-5'-end-labeled DNA fragments, obtained from the human c-Ha-ras-1 and p53 genes, at cytosine and thymine residues in the presence of Cu(II). Catalase and bathocuproine inhibited DNA damage, suggesting that H2O2 and Cu(I) were involved. Analysis of the products generated from aminoacetone revealed that aminoacetone underwent Cu(II)-mediated autoxidation in two different pathways: the major pathway in which methylglyoxal and NH+4 are generated and the minor pathway in which 2,5-dimethylpyrazine is formed through condensation of two molecules of aminoacetone. These findings suggest that H2O2 generated by the autoxidation of aminoacetone reacts with Cu(I) to form reactive species capable of causing oxidative DNA damage.  相似文献   

3.
Carcinogenic benzo[a]pyrene (BP) is generally considered to show genotoxicity by forming DNA adducts of its metabolite, BP-7,8-diol-9,10-epoxide. We investigated oxidative DNA damage and its sequence specificity induced by BP-7,8-dione, another metabolite of BP, using (32)P-5'-end-labeled DNA. Formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at G residues of 5'-TG-3' sequence and at poly(C) sequences, in DNA incubated with BP-7,8-dione in the presence of NADH and Cu(II), whereas piperidine treatment induced cleavage sites at T mainly of 5'-TG-3'. BP-7,8-dione strongly damaged the G and C of the ACG sequence complementary to codon 273 of the p53 gene. Catalase and a Cu(I)-specific chelator attenuated the DNA damage, indicating the involvement of H(2)O(2) and Cu(I). BP-7,8-dione with NADH and Cu(II) also increased 8-oxo-7,8-dihydro-2'-deoxyguanosine formation. We conclude that oxidative DNA damage, especially double base lesions, may participate in the expression of carcinogenicity of BP in addition to DNA adduct formation.  相似文献   

4.
Although the cause of dopaminergic cell death in Parkinson's disease is still poorly understood, there is accumulating evidence suggesting that metal ions can be involved in the processes. We investigated the effect of manganese on cell death and DNA damage in PC12 cells treated with dopamine. Mn(II) enhanced cell death induced by dopamine. Mn(II) also increased the 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) contents of DNA in PC12 cells treated with dopamine. To clarify the mechanism of cellular DNA damage, we investigated DNA damage induced by dopamine and Mn(II) using (32)P-labeled DNA fragments. Mn(II) enhanced Cu(II)-dependent DNA damage by dopamine. The Mn(II)-enhanced DNA damage was greatly increased by NADH. Piperidine and formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at T and G of the 5'-TG-3' sequence, respectively. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Oxygen consumption and UV-visible spectroscopic measurements showed that Mn(II) enhanced autoxidation of dopamine with H(2)O(2) formation. These results suggest that reactive species derived from the reaction of H(2)O(2) with Cu(I) participates in Mn(II)-enhanced DNA damage by dopamine plus Cu(II). Therefore, it is concluded that oxidative DNA damage induced by dopamine in the presence of Mn(II), NADH, and Cu(II) is possibly linked to the degeneration of dopaminergic neurons.  相似文献   

5.
Titanium dioxide (TiO2) is a potential photosensitizer for photodynamic therapy. In this study, the mechanism of DNA damage catalyzed by photo-irradiated TiO2 was examined using [32P]-5'-end-labeled DNA fragments obtained from human genes. Photo-irradiated TiO2 (anatase and rutile) caused DNA cleavage frequently at the guanine residue in the presence of Cu(II) after E. coli formamidopyrimidine-DNA glycosylase treatment, and the thymine residue was also cleaved after piperidine treatment. Catalase, SOD and bathocuproine, a chelator of Cu(I), inhibited the DNA damage, suggesting the involvement of hydrogen peroxide, superoxide and Cu(I). The photocatalytic generation of Cu(I) from Cu(II) was decreased by the addition of SOD. These findings suggest that the inhibitory effect of SOD on DNA damage is due to the inhibition of the reduction of Cu(II) by superoxide. We also measured the formation of 8-oxo-7,8-dihydro-2' -deoxyguanosine, an indicator of oxidative DNA damage, and showed that anatase is more active than rutile. On the other hand, high concentration of anatase caused DNA damage in the absence of Cu(II). Typical free hydroxyl radical scavengers, such as ethanol, mannnitol, sodium formate and DMSO, inhibited the copper-independent DNA photodamage by anatase. In conclusion, photo-irradiated TiO2 particles catalyze the copper-mediated site-specific DNA damage via the formation of hydrogen peroxide rather than that of a free hydroxyl radical. This DNA-damaging mechanism may participate in the phototoxicity of TiO2.  相似文献   

6.
Epidemiological studies have suggested that the use of aspirin is associated with a decreased incidence of human malignancies, particularly colorectal cancer. Since reactive oxygen species (ROS) are critically involved in multistage carcinogenesis, this study was undertaken to examine the ability of aspirin to inhibit ROS-mediated DNA damage. Hydrogen peroxide (H2O2)+Cu(II) and hydroquinone (HQ) + Cu(II) were used to cause oxidative DNA strand breaks in phiX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.5-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a marked inhibition of oxidative DNA damage induced by either H2O2/Cu(II) or HQ/Cu(II). The inhibition of oxidative DNA damage by aspirin was exhibited in a concentration-dependent manner. Moreover, aspirin was found to be much more potent than the hydroxyl radical scavengers, mannitol and dimethyl sulfoxide, in protecting against the H2O2/Cu(II)-mediated DNA strand breaks. Since the reduction of Cu(II) to Cu(I) is crucially involved in both H2O2/Cu(II)- and HQ/Cu(II)-mediated formation of hydroxyl radical or its equivalent, and the subsequent oxidative DNA damage, we examined whether aspirin could inhibit this Cu(II)/Cu(I) redox cycle. It was observed that aspirin at concentrations that showed the inhibitory effect on oxidative DNA damage did not alter the Cu(II)/Cu(I) redox cycle in either H2O2/Cu(II) or HQ/Cu(II) system. In addition, aspirin was not found to significantly scavenge H2O2. This study demonstrates for the first time that aspirin potently inhibits both H2O2/Cu(II)- and HQ/Cu(II)-mediated oxidative DNA strand breaks most likely through scavenging the hydroxyl radical or its equivalent derived from these two systems. The potent inhibition of oxidative DNA damage by aspirin may thus partially contribute to its anticancer activities observed in humans.  相似文献   

7.
The mechanism of DNA damage by a metabolite of the carcinogen o-anisidine in the presence of metals was investigated by the DNA sequencing technique using 32P-labeled human DNA fragments. The o-anisidine metabolite, o-aminophenol, caused DNA damage in the presence of Cu(II). The DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine by o-aminophenol increased in the presence of Cu(II). We conclude that Cu(II)-mediated oxidative DNA damage by this o-anisidine metabolite seems to be relevant for the expression of the carcinogenicity of o-anisidine. o-Aminophenol plus Cu(II) caused preferential DNA damage at the 5'-site guanine of GG and GGG sequences. When CuZn-SOD or Mn-SOD was added, the DNA damage was enhanced and its predominant cleavage sites were changed into thymine and cytosine residues. We consider that SOD may increase the frequency of mutations due to DNA damage induced by o-aminophenol and thus increase its carcinogenic potential.  相似文献   

8.
Three ligands which contain histidine and conjugated by a flexible linker, have been characterized and evaluated as DNA cleavage agents. The cleavage activity of metal complexes were evaluated by monitoring the conversion of supercoiled plasmid DNA (pUC19) (Form I) to nicked circular DNA (Form II) by agarose gel electrophoresis. The results showed that the cleavage activity of Cu(II) complexes was enhanced compared with histidine. Specially, at a high reaction concentration (0.2 mM), Cu(II) complexes can cleave the plasmid DNA with some selectivity.  相似文献   

9.
4-Hydrazinobenzoic acid, an ingredient of mushroom Agaricus bisporus, is carcinogenic to rodents. To clarify the mechanism of carcinogenesis, we investigated DNA damage by 4-hydrazinobenzoic acid using 32P-labeled DNA fragments obtained from the human p53 and p16 tumor suppressor genes. 4-Hydrazinobenzoic acid induced Cu(II)-dependent DNA damage especially piperidine-labile formation at thymine and cytosine residues. Typical hydroxyl radical scavengers showed no inhibitory effects on Cu(II)-mediated DNA damage by 4-hydrazinobenzoic acid. Bathocuproine and catalase inhibited the DNA damage, indicating the participation of Cu(I) and H2O2 in the DNA damage. These findings suggest that H2O2 generated by the autoxidation of 4-hydrazinobenzoic acid reacts with Cu(I) to form reactive oxygen species, capable of causing DNA damage. Interestingly, catalase did not completely inhibit DNA damage caused by a high concentration of 4-hydrazinobenzoic acid (over 50 μM) in the presence of Cu(II). 4-Hydrazinobenzoic acid induced piperidine-labile sites frequently at adenine and guanine residues in the presence of catalase. 4-Hydrazinobenzoic acid increased formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in calf thymus DNA, whereas 4-hydrazinobenzoic acid did not increase the formation of 8-oxodG in the presence of catalase. ESR spin-trapping experiments showed that the phenyl radical was formed during the reaction of 4-hydrazinobenzoic acid in the presence of Cu(II) and catalase. Matrix-assisted laser desorption/ionization time-of-flight mass (MALDI-TOF/mass) spectrometry analysis showed that phenyl radical formed adduct with adenosine and guanosine. These results suggested that 4-hydrazinobenzoic acid induced DNA damage via not only H2O2 production but also phenyl radical production. This study suggests that both oxidative DNA damage and DNA adduct formation play important roles in the expression of carcinogenesis of 4-hydrazinobenzoic acid.  相似文献   

10.
Nitropyrenes are carcinogenic pollutants. Adduct formation following nitro-reduction is considered to be a major cause of nitropyrene-mediated DNA damage. We investigated the role of 1-nitrosopyrene, a metabolite of 1-nitropyrene, in causing oxidative DNA damage, using 32P-5'-end-labeled DNA. 1-Nitrosopyrene was found to facilitate Cu(II)-mediated DNA damage in the presence of NADH. Catalase and a Cu(I)-specific chelator attenuated DNA damage, indicating the involvement of H2O2 and Cu(I). Typical *OH scavenger did not have a significant effect. These results suggest that the main reactive species is probably a DNA-copper-hydroperoxo complex. We also measured 8-oxo-7,8-dihydro-2'-deoxyguanosine formation by 1-nitrosopyrene in the presence of Cu(II) and NADH, using an electrochemical detector coupled to a high-pressure liquid chromatograph. We conclude that oxidative DNA damage, in addition to DNA adduct formation, may play an important role in the carcinogenesis of nitropyrenes.  相似文献   

11.
Eugenol used as a flavor has potential carcinogenicity. DNA adduct formation via 2,3-epoxidation pathway has been thought to be a major mechanism of DNA damage by carcinogenic allylbenzene analogs including eugenol. We examined whether eugenol can induce oxidative DNA damage in the presence of cytochrome P450 using [32P]-5'-end-labeled DNA fragments obtained from human genes relevant to cancer. Eugenol induced Cu(II)-mediated DNA damage in the presence of cytochrome P450 (CYP)1A1, 1A2, 2C9, 2D6, or 2E1. CYP2D6 mediated eugenol-dependent DNA damage most efficiently. Piperidine and formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at T and G residues of the 5'-TG-3' sequence, respectively. Interestingly, CYP2D6-treated eugenol strongly damaged C and G of the 5'-ACG-3' sequence complementary to codon 273 of the p53 gene. These results suggest that CYP2D6-treated eugenol can cause double base lesions. DNA damage was inhibited by both catalase and bathocuproine, suggesting that H2O2 and Cu(I) are involved. These results suggest that Cu(I)-hydroperoxo complex is primary reactive species causing DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine was significantly increased by CYP2D6-treated eugenol in the presence of Cu(II). Time-of-flight-mass spectrometry demonstrated that CYP2D6 catalyzed O-demethylation of eugenol to produce hydroxychavicol, capable of causing DNA damage. Therefore, it is concluded that eugenol may express carcinogenicity through oxidative DNA damage by its metabolite.  相似文献   

12.
The mechanism of DNA damage induced by metabolites of nitrobenzene was investigated in relation to the carcinogenicity and reproductive toxicity of nitrobenzene. Nitrosobenzene, a nitrobenzene metabolite, induced NADH plus Cu(II)-mediated DNA cleavage frequently at thymine and cytosine residues. Catalase and bathocuproine inhibited the DNA damage, suggesting the involvement of H2O2 and Cu(I). Typical free hydroxyl radical scavengers showed no inhibitory effects on DNA damage. Nitrosobenzene caused the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of NADH and Cu(II). ESR spectroscopic study has confirmed that nitrosobenzene is reduced by NADH to the phenylhydronitroxide radical even in the absence of Cu(II). These results suggest that nitrosobenzene can be reduced non-enzymatically by NADH, and the redox cycle reaction resulted in oxidative DNA damage due to the copper-oxygen complex, derived from the reaction of Cu(I) with H2O2.  相似文献   

13.
The biotransformation of butylated hydroxyanisole (BHA), a possible carcinogenic food antioxidant, includes o-demethylation to 2-tert-butyl(1,4)hydroquinone (TBHQ) which can subsequently be oxidized to 2-tert-butyl(1,4)paraquinone (TBQ). In this study, we have examined the capacity of Cu, a nuclei- and DNA-associated transition metal, to mediate the oxidation of TBHQ. In phosphate buffered saline (PBS), autooxidation of TBHQ to TBQ was not detectable, while Cu(II) at micromolar concentrations strongly catalyzed the oxidation of TBHQ to TBQ. Oxidation of TBHQ by Cu(II) was accompanied by the utilization of O(2) and the concomitant generation of H(2)O(2). Using electron spin resonance spectroscopy, it was observed that Cu(II) mediated the one electron oxidation of TBHQ to a semiquinone anion radical. The formation of a semiquinone anion radical, the utilization of O(2) and the generation of H(2)O(2) and TBQ could be completely blocked by bathocuproinedisulfonic acid (BCS) and reduced glutathione (GSH), two Cu(I)-chelators. 4-Pyridyl-1-oxide-N-tert-butylnitrone (POBN)-spin trapping experiments showed that the reaction of TBHQ with Cu(II) resulted in the generation of POBN-CH(3) and POBN-CH(OH)CH(3) adducts in the presence of dimethyl sulfoxide (DMSO) and ethanol, respectively, suggesting the formation of hydroxyl radical or a similar reactive intermediate. The formation of POBN-CH(3) adduct from the TBHQ/Cu(II)+DMSO could be completely inhibited by catalase, GSH or BCS, indicating that the hydroxyl radical or its equivalent is generated from the interaction of H(2)O(2) with Cu(I). Incubation of supercoiled phiX-174 plasmid DNA with the TBHQ/Cu(II) resulted in extensive DNA strand breaks, which could be prevented by catalase or BCS. Incubation of rat hepatocytes with TBHQ in PBS led to increased formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in nuclear DNA. The TBHQ-induced formation of 8-OHdG was markedly reduced in the presence of cell permeable Cu(I)-specific chelator, bathocuproine or neocuproine, suggesting that a Cu(II)/Cu(I) redox mechanism may also be involved in the induction of oxidative DNA damage by TBHQ in hepatocytes. Taken together, the above results conclusively demonstrate that the activation of TBHQ by Cu(II) results in the formation of TBQ, semiquinone anion radical and reactive oxygen species (ROS), and that the ROS formed may participate in oxidative DNA damage in both isolated DNA and intact cells. These reactions may contribute to the carcinogenicity as well as other biochemical activities observed with BHA in animals. To our knowledge this study provides the first evidence that endogenous cellular Cu may be capable of bioactivating TBHQ, leading to oxidative DNA damage in cultured cells.  相似文献   

14.
Previous studies have demonstrated that phenolic compounds, including genistein (4',5,7-trihydroxyisoflavone) and resveratrol (3,4',5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in phi X-174 plasmid DNA. H(2)O(2)/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H(2)O(2)/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H(2)O(2) suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H(2)O(2)/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H(2)O(2) were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

15.
The known action of Cu, Zn superoxide dismutase (Cu(2)Zn(2)SOD) that converts O(2)(-) to O(2) and H(2)O(2) plays a crucial role in protecting cells from toxicity of oxidative stress. However, the overproduction of Cu(2)Zn(2)SOD does not result in increased protection but rather creates a variety of unfavorable effects, suggesting that too much Cu(2)Zn(2)SOD may be injurious to the cells. The present study examined the DNA cleavage activity mediated by a Cu(n)SOD that contains 1-4 copper ions, in order to obtain an insight into the aberrant copper-mediated oxidative chemistry in the enzyme. A high SOD activity was observed upon metallation of the apo-form of Cu(2)Zn(2)SOD with Cu(II), indicating that nearly all of the Cu(II) in the Cu(n)SOD is as active as the Cu(II) in the copper site of fully active Cu(2)Zn(2)SOD. Using a supercoiled DNA as substrate, significant DNA cleavage was observed with the Cu(n)SOD in the presence of hydrogen peroxide or mercaptoethanol, whereas DNA cleavage with free Cu(II) ions can occur only <5% under the same conditions. Comparison with other proteins shows that the DNA cleavage activity is specific to some proteins including the Cu(n)SOD. The steady state study suggests that a cooperative action between the SOD protein and the Cu(II)may appear in the DNA cleavage activity, which is independent of the number of Cu(II) in the Cu(n)SOD. The kinetic study shows that a two-stage reaction was involved in DNA cleavage. The effects of various factors including EDTA, radical scavengers, bicarbonate anion, and carbon dioxide gas molecules on the Cu(n)SOD-mediated DNA cleavage activity were also investigated. It is proposed that DNA cleavage occurs via both hydroxyl radical oxidation and hydroxide ion hydrolysis pathways. This work implies that any form of the copper-containing SOD enzymes (including Cu(2)Zn(2)SOD and its mutants) might have the DNA cleavage activity.  相似文献   

16.
To study the structure-function relationship of the oxidative-damage effect of ascorbic acid, we have focused on the interaction between plasmid DNA pUC19 and a series of ascorbic acid derivatives modified on different OH groups in the presence of transition metal ions. Some ascorbic acid derivatives can selectively cleave plasmid DNA from Form I to Form II in the presence of low concentration of Cu2+ just like ascorbic acid itself, while other derivatives oxidatively damage plasmid DNA slightly. We found that those derivatives with unattached 2-OH and 3-OH groups retain the ability to cleave the plasmid DNA. The derivatives that have been methylated on 2-OH or 3-OH can only cleave plasmid DNA softly, and those derivatives that have been protected on both 2-OH and 3-OH can hardly exert an oxidative damage on plasmid DNA under the same condition. Form these results, we can draw the conclusion that 2-OH and 3-OH groups of the ascorbic acid molecule contribute most to this biological activity.  相似文献   

17.
Morin is a potential inhibitor of amyloid β-peptide aggregation. This aggregation is involved in the pathogenesis of Alzheimer’s disease. Meanwhile, morin has been found to be mutagenic and exhibits peroxidation of membrane lipids concurrent with DNA strand breaks in the presence of metal ions. To clarify a molecular mechanism of morin-induced DNA damage, we examined the DNA damage and its site specificity on 32P-5′-end-labeled human DNA fragments treated with morin plus Cu(II). The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, was also determined in calf thymus DNA treated with morin plus Cu(II). Morin-induced DNA strand breaks and base modification in the presence of Cu(II) were dose dependent. Morin plus Cu(II) caused piperidine-labile lesions preferentially at thymine and guanine residues. The DNA damage was inhibited by methional, catalase and Cu(I)-chelator bathocuproine. The typical ?OH scavengers ethanol, mannitol and sodium formate showed no inhibitory effect on DNA damage induced by morin plus Cu(II). When superoxide dismutase was added to the solution, DNA damage was not inhibited. In addition, morin plus Cu(II) increased 8-oxodG formation in calf thymus DNA fragments. We conclude that morin undergoes autoxidation in the presence of Cu(II) via a Cu(I)/Cu(II) redox cycle and H2O2 generation to produce Cu(I)-hydroperoxide, which causes oxidative DNA damage.  相似文献   

18.
Acetamide is carcinogenic in rats and mice. To clarify the mechanism of carcinogenesis by acetamide, we investigated DNA damage by and acetamide metabolite, acetohydroxamic acid (AHA), using 32P-5'-end-labeled DNA fragments. AHA treated with amidase induced DNA damage in the presence of Cu(II) and displayed a similar DNA cleavage pattern of hydroxylamine. DNA damage was inhibited by both catalase and bathocuproine, suggesting that H2O2 and Cu(I) are involved. Carboxy-PTIO, a specific scavenger of nitric oxide (NO), partially inhibited DNA damage. The amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) by amidase-treated AHA was similar to that by hydroxylamine. ESR spectrometry revealed that amidase-treated AHA as well as hydroxylamine generated NO in the presence of Cu(II). From these results, it has been suggested that AHA might be converted into hydroxylamine by amidase. These results suggest that metal-mediated DNA damage mediated by amidase-catalyzed hydroxylamine generation plays an important role in the carcinogenicity of acetamide.  相似文献   

19.
Mechanisms of DNA damage by metabolites of carcinogenic o-toluidine in the presence of metals were investigated by the DNA sequencing technique using (32)P-labeled human DNA fragments. 4-Amino-3-methylphenol, a major metabolite, caused DNA damage in the presence of Cu(II). Predominant cleavage sites were thymine and cytosine residues. o-Nitrosotoluene, a minor metabolite, did not induce DNA damage even in the presence of Cu(II), but addition of NADH induced DNA damage very efficiently. The DNA cleavage pattern was similar to that in the case of 4-amino-3-methylphenol. Bathocuproine and catalase inhibited DNA damage by these o-toluidine metabolites, indicating the participation of Cu(I) and H(2)O(2) in the DNA damage. Typical free hydroxyl radical scavengers showed no inhibitory effects on the DNA damage. o-Toluidine metabolites increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). UV-visible and ESR spectroscopic studies have demonstrated that 4-amino-3-methylphenol is autoxidized to form the aminomethylphenoxyl radical and o-nitrosotoluene is reduced by NADH to the o-toluolhydronitroxide radical in the presence and absence of Cu(II). Consequently, it is considered that these radicals react with O(2) to form O(-)(2) and subsequently H(2)O(2), and that the reactive species generated by the reaction of H(2)O(2) with Cu(I) participate in the DNA damage. Metal-mediated DNA damage by o-toluidine metabolites through H(2)O(2) seems to be relevant for the expression of the carcinogenicity of o-toluidine.  相似文献   

20.
The mechanism of metal-mediated DNA damage by carcinogenic danthron (1,8-dihydroxyanthraquinone) and anthraquinone was investigated by the DNA sequencing technique using 32P-labeled human DNA fragments obtained from the human c-Ha-ras-1 proto-oncogene and the p53 tumor suppressor gene. Danthron caused DNA damage particularly at guanines in the 5'-GG-3', 5-GGGG-3', 5'-GGGGG-3' sequences (damaged bases are underlined) in the presence of Cu(II), cytochrome P450 reductase and the NADPH-generating system. The DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine increased with increasing concentration of danthron. On the other hand, carcinogenic anthraquinone induced less oxidative DNA damage than danthron. Electron spin resonance study showed that the semiquinone radical could beproduced by P450 reductase plus NADPH-mediated reduction of danthron, while little signal was observed with anthraquinone. These results suggest that danthron is much more likely to be reduced by P450 reductase and generate reactive oxygen species through the redox cycle, leading to more extensive Cu(II)-mediated DNA damage than anthraquinone. In the case of anthraquinone, its hydroxylated metabolites with similar reactivity to danthron may participate in DNA damage in vivo. We conclude that oxidative DNA damage by danthron and anthraquinone seems to be relevant for the expression of their carcinogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号