首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular and molecular immune effectors that participated in host immunity against Trichinella spiralis newborn larvae were characterized in vivo using AO rats. Donor rats were immunized with 2,000 muscle larvae orally or 11,400 newborn larvae i.v. Immune serum and cells from spleen, peripheral lymph nodes, mesenteric lymph node, thoracic duct lymph and the peritoneal cavity were obtained from donor rats 10-21 days after infection and transferred into normal recipient rats. The control recipients received either no cells and serum or normal cells and normal serum obtained from normal donors. Newborn larvae (20,000-50,000) were injected either i.v. or ip into these recipients and immunity against newborn larvae was measured either by muscle larvae burden of the recipients three weeks later or by direct recovery of newborn larvae from the peritoneal cavity of the recipients. The experiments demonstrated that immune lymphocytes conferred no protection in the recipients but that immune serum and immune peritoneal cells were protective and these effects were synergistic. Cell adherence to the cuticle and killing of newborn larvae were observed in the peritoneal cavity of immune rats. Positive fluorescence was observed on newborn larvae incubated with fractionated IgM and IgG(E) antibody isotypes. Massive deposition of antibody molecules on newborn larvae was demonstrated by scanning electron microscopy. Studies using transmission electron microscopy revealed that the larval adherent cells were stimulated macrophages, neutrophils and eosinophils.  相似文献   

2.
Although eosinophils and other inflammatory cells from the circulation and peritoneal cavity can damage Trichinella spiralis newborn larvae (NBL) in vitro, the cytotoxic potential of cells from the intestinal lamina propria, a site that may be the first line of defense against NBL migration, is unknown. Accordingly, we examined the interaction between NBL and isolated intestinal lamina propria cells (ILPC), including an enriched eosinophil population, from rats and humans. Rat ILPC killed NBL in vitro only after a prolonged incubation of 6 days. However they strongly adhered to NBL after only 4 hr incubation and prevented muscle establishment of NBL injected intravenously. Human ILPC showed similar adherence as rat ILPC but no killing was seen at the incubation time tested (36 hr).  相似文献   

3.
Immunological and electron microscopy investigations of the phagocytic and killing activities of peritoneal macrophages from rats and mice against Yersinia enterocolitica serotype O:8 cells were performed. The effect of in vivo application of cytoplasmic membranes (CM) from the stable Escherichia coli WF+ L-form on macrophage activity was also studied. It was established that rat macrophages more actively phagocytosed the plasmidless pYV(-) Y. enterocolitica cells, compared to the plasmid-bearing pYV(+) Y. enterocolitica cells. The killing ability against both variants of the Y. enterocolitica strain was significantly enhanced in macrophages from CM-treated rats after 2 h, 4 h, and 24 h incubation. The CM treatment enhanced the phagocytic activity of the macrophages. The in vitro interaction of normal and immunostimulated rat macrophages with both pYV(+) and pYV(-) variants of Y. enterocolitica did not lead to any additional apoptotic and necrotic changes in macrophages compared to control macrophages, which were cultivated without Y. enterocolitica. Electron-microscopic investigation showed that mouse macrophages eliminated Y. enterocolitica pYV(+) cells in vivo after 24 h. No engulfed or digested bacterial cells were observed. Activation of cell surfaces and vacuolization of macrophage cytoplasm, both of CM-treated non-infected and infected mice, were observed. The experimental results showed that Y. enterocolitica pYV(+) cells could be eliminated by peritoneal macrophages.  相似文献   

4.
Expression of Fc receptors (FcR) for IgG1, IgG2A, IgG2B, IgM, IgA and IgE, binding of C3 and C5 complement components and phagocytic and pinocytic activities were determined in peritoneal and omental macrophages of nu/nu, nu/+ and +/+ Balb/c mice. nu/nu mice showed a higher proportion of FcR and complement receptor-bearing peritoneal macrophages along with a significantly higher phagocytic activity of peritoneal macrophages both in vitro and in vivo. Tests of pinocytic activity in these cells and phagocytic activity in omental phagocytes yielded similar results. We conclude that athymic mice compensate their immune defects by a higher phagocytic activity of their professional phagocytes and a higher expression of receptors mediating this process.  相似文献   

5.
Lewis lung (3LL) peritoneal carcinomatosis elicits a complex host response in the peritoneal compartment. The response was delayed, showing few inflammatory cells through day 6 after lethal challenge with 3LL cells. Responses began in about half the mice on day 7 and had appeared in all mice by day 11. On day 7, some mice still showed no detectable 3LL growth in the peritoneal lavage fluid, and no differences in the peritoneal cell populations as compared with the control group. Other tumor-bearing mice, however, had evidence of 3LL cells and hemorrhagic ascites in the peritoneal compartment, with increased numbers of peritoneal macrophages (PM) and polymorphonuclear neutrophils (PMN). By day 11, all tumor-bearing mice had 3LL growth and hemorrhagic ascites. On days 7–11, there was a major influx of macrophages with a later influx of PMN between days 11 and 14. Two distinct PM populations were detected on day 7 in mice that showed detectable 3LL peritoneal carcinomatosis: resident PM, which did not express the Mac-2 antigen, and recruited PM, which were Mac-2+. At least some resident PM remained in the peritoneal compartment through day 14. Analysis of the kinetics of the cytotoxic capabilities of PM from tumor-bearing mice showed that by day 7 macrophages were able to kill the B16 melanoma tumor target, but not the 3LL target. The PM, however, were able to be activated further to kill the 3LL target by treatment in vitro with lipopolysaccharide and interferon . No inhibition of PM tumoricidal activity could detected in the peritoneal wash of tumor-bearing mice. A lack of activation of PM from 3LL tumor-bearing mice may be involved in progression of peritoneal carcinomatosis.  相似文献   

6.
Dietary fats affect macrophage-mediated cytotoxicity towards tumour cells   总被引:2,自引:0,他引:2  
In the present study, the effects of feeding mice diets of different fatty acid compositions on the production of TNF-alpha and nitric oxide by lipopolysaccharide-stimulated peritoneal macrophages and on macrophage-mediated cytotoxicity towards L929 and P815 cells were investigated. C57Bl6 mice were fed on a low-fat (LF) diet or on high-fat diets (21% fat by weight), which included coconut oil (CO), olive oil (OO), safflower oil (SO) or fish oil (FO) as the principal fat source. The fatty acid composition of the macrophages was markedly influenced by that of the diet fed. Lipopolysaccharide (LPS)-stimulated macrophages from FO-fed mice showed significantly lower production (up to 80%) of PGE2 than those from mice fed on each of the other diets. There was a significant positive linear correlation between the proportion of arachidonic acid in macrophage lipids and the ability of macrophages, to produce PGE2. Lipopolysaccharide-stimulated TNF-alpha production by macrophages decreased with increasing unsaturated fatty acid content of the diet (i.e. FO < SO < OO < CO < LF). Macrophages from FO-fed mice showed significantly lower production of TNF-alpha than those from mice fed on each of the other diets. Nitrite production was highest for LPS-stimulated macrophages from mice fed on the LF diet. Macrophages from FO-fed mice showed significantly higher production of nitrite than those from mice fed on the OO and SO diets. Compared with feeding the LF diet, feeding the CO, OO or SO diets significantly decreased macrophage- mediated killing of P815 cells (killed by nitric oxide). Fish oil feeding did not alter killing of P815 cells by macrophages, compared with feeding the LF diet; killing of P815 cells was greater after FO feeding than after feeding the other high fat diets. Compared with feeding the LF diet, feeding the OO or SO diets significantly decreased macrophage-mediated killing of L929 cells (killed by TNF). Coconut oil or FO feeding did not alter killing of L929 cells by macrophages, compared with feeding the LF diet. It is concluded that the type of fat in the diet affects macrophage composition and alters the ability of macrophages to produce cytotoxic and immunoregulatory mediators and to kill target tumour cells.  相似文献   

7.
Incorporation of 3H-TdR into EL4 leukemic cells in vitro was inhibited by peritoneal exudate cells (PEC) harvested from syngeneic C57BL/6J mice given an intraperitoneal (i.p.) injection of 1x10(7) viable Mycobacterium smegmatis ATCC 607 (Smeg) 4 days before. This phenomenon was also observed in the following five systems of PEC from animals and syngeneic tumor cells: C57BL/6J mice and B16 melanoma; DBA/2 mice and P815 mastocytoma; SWM/Ms mice and K5 fibrosarcoma; BALB/c, nu/nu mice and KKN-1 fibrosarcoma; and strain 2 guinea pigs and line-10 hepatoma. The in vitro cytotoxicity of the PEC activated by viable Smeg was much higher than those activated by dead-Smeg, viable BCG or proteose peptone. The activity of the adherent fraction of the PEC was stronger than that of the nonadherent one, and not influenced by either anti-theta or anti-mouse lymphocyte rabbit sera. The PEC induced with Smeg 4 days before contained a large population of mononuclear cells (88.9%) and a significant level of polymorphonuclear cells (PMN) (3.2%), and showed a much higher cytotoxicity than the PEC induced with Smeg 3 hr before, which contained a much larger population of PMN (71.9%), suggesting that PMN were not the effector cells in this system. In vitro and in vivo treatment with macrophage-inhibitors such as carrageenan, trypan blue and cytochalacin B, reduced the activity of the PEC. All of these facts suggested macrophages as the effector. Viable macrophages were required for the growth inhibition of EL4 in vitro: gamma-ray irradiated or freeze-thawed macrophages were ineffective. Kinetic studies revealed that inhibition of 3H-TdR incorporation into EL4 cells started within 3 hr of incubation together with the activated macrophages at an effector to target (E/T) ratio of 5, and the incorporation decreased gradually with the lapse of incubation time. On the other hand, 51Cr release from labelled EL4 was undetected when the E/T ratio was 5 but detected at on E/T of 10 or more. Even at the higher E/T ratio, at least 10 hr were needed until the release of 51Cr, suggesting that the activated macrophages produced growth inhibition of tumor cells followed by cell destruction.  相似文献   

8.
Nude BALB/c mice (athymic) were more susceptible to fatal herpes simplex virus (HSV) than normal BALB/c mice (P = 0.002). The peritoneal cells of nude mice mediated levels of antibody-dependent cellular cytotoxicity (ADCC) of equal or greater magnitude than cells from normal BALB/c, heterozygote nu/+, or C57BL/6 mice. Unstimulated natural killer cytotoxicity of peritoneal cells from nude mice was higher (P less than 0.05) than that mediated by cells from C57BL/6 mice. Nude mice failed to make anti-HSV ADCC antibody 6 to 14 days post HSV inoculation, at times when nu/+, BALB/c, and C57BL/6 mice produced antibody. Passive reconstitution of nude mice with high titer intraperitoneal anti-HSV immune globulin provided circulating anti-HSV ADCC antibody and significant protection against lethal HSV infection.  相似文献   

9.
Summary The present study was undertaken to determine the factors that influence antibody-mediated cytotoxicity during immunotherapy of virally transformed tumor cells. As model a Rauscher-virus-induced myeloid leukemic cell line of BALB/c origin (RMB-1) was used, which forms disseminated tumors, when inoculated intravenously in BALB/c mice. As previously reported, prolonged survival was obtained when tumor-bearing mice were treated in vivo with a single high dose of a tumor-specific IgG2a monoclonal antibody. This study shows that antibody-dependent cellular cytotoxicity is an important mechanism involved in tumor cell destruction. Since in vitro studies showed that peritoneal macrophages were capable of killing RMB-1 cells in the presence of tumor-specific monoclonal antibody and since in the tumors of mice treated with monoclonal antibody a high influx of macrophages was observed histologically, it is likely that macrophages play an important effector role in elimination of tumor cells. Successful therapy in C5-complement-deficient tumor-bearing mice suggests that complement-dependent cytotoxicity does not play a major role. In nude (T-cell-deficient) mice the therapeutic effect of tumor-specific IgG2a antibody was significantly less than in immunocompetent mice. Although infiltration analysis of tumors of treated and untreated mice showed equally low numbers of helper-T and suppressor/cytotoxic T-cells, the mortality studies of T-cell-deficient and immunocompetent mice indicate that T-cells play a substantial, auxillary role during antibody-mediated, tumor destruction in our model.  相似文献   

10.
Eosinophils play important roles in regulation of cellular responses under conditions of homeostasis or infection. Intestinal infection with the parasitic nematode, Trichinella spiralis, induces a pronounced eosinophilia that coincides with establishment of larval stages in skeletal muscle. We have shown previously that in mouse strains in which the eosinophil lineage is ablated, large numbers of T. spiralis larvae are killed by NO, implicating the eosinophil as an immune regulator. In this report, we show that parasite death in eosinophil-ablated mice correlates with reduced recruitment of IL-4(+) T cells and enhanced recruitment of inducible NO synthase (iNOS)-producing neutrophils to infected muscle, as well as increased iNOS in local F4/80(+)CD11b(+)Ly6C(+) macrophages. Actively growing T. spiralis larvae were susceptible to killing by NO in vitro, whereas mature larvae were highly resistant. Growth of larvae was impaired in eosinophil-ablated mice, potentially extending the period of susceptibility to the effects of NO and enhancing parasite clearance. Transfer of eosinophils into eosinophil-ablated ΔdblGATA mice restored larval growth and survival. Regulation of immunity was not dependent upon eosinophil peroxidase or major basic protein 1 and did not correlate with activity of the IDO pathway. Our results suggest that eosinophils support parasite growth and survival by promoting accumulation of Th2 cells and preventing induction of iNOS in macrophages and neutrophils. These findings begin to define the cellular interactions that occur at an extraintestinal site of nematode infection in which the eosinophil functions as a pivotal regulator of immunity.  相似文献   

11.
The role of macrophages, their products, and the specific antibody response were examined during chronic Trichinella spiralis infection in BALB/c mice. Adult T. spiralis in intestines were detected from 5 to 20 dpi. Muscle larvae numbers peaked at 45 dpi and thereafter a reduction was noted. The highest numbers of macrophages in the peritoneal cavity of infected mice were obtained up to 30 dpi. The production of NO by macrophages in infected mice was suppressed at 5 dpi, and then NO release increased until 45 dpi. The levels of NO in plasma and urine were lower in infected mice during the entire experiment in comparison to control. The production of O(2)(-) in peritoneal macrophages was inhibited during the first two weeks after infection and then increased until 90 dpi. Circulating T. spiralis antigens in plasma and urine were detected from 5 to 30 dpi. Specific IgM and IgA in serum increased until 20 dpi. IgG, IgG(1), and IgG(2) levels in serum increased until 60 dpi.  相似文献   

12.
We studied the effect of lentinan, a fungal polysaccharide immunomodulator, on mouse peritoneal macrophages. The i.p. treatment of mice with 10 mg/kg lentinan affected the number, plastic-adherence, and endogen peroxidase activity of peritoneal cells. The cytotoxicity of lentinan-stimulated peritoneal macrophages was determined against several murine and human metastatic tumor targets: Lewis lung carcinoma (LLT) and two human melanomas, and was found to be significantly higher than that of the macrophages from control animals. However, the highly metastatic variant of LLT (LLT-HH) was resistant to the cytolytic effect of resident and lentinan-activated macrophages as well, indicating that the stimulation for cytotoxicity depends not only on the functional activity of the effector but also on the sensitivity of the target.  相似文献   

13.
Platidiam, cyclophosphamide and adriamycin induced tumoricidal activity of peritoneal macrophages from patients with disseminated ovarian carcinoma when applied in the autologous tumor cells in vitro. This effect was not observed with 10 micrograms/ml concentration of 5-fluorouracil. The mice peritoneal macrophages after incubation in vitro with 0.01-1.0 micrograms/ml of aclarubicin showed cytostatic action on syngeneic and semisyngeneic P388 cells. The peritoneal macrophages from mice treated with 2.5 mu/kg of aclarubicin intraperitoneally 1-4 days before were cytotoxic for tumor cells too.  相似文献   

14.
Summary The antimetastatic effect of Lactobacillus casei YIT9018 (LC 9018) against Lewis lung carcinoma (3LL) in C57BL/6 mice was determined. Intrapleural (i.pl.) administration of LC 9018 was effective in inhibiting pulmonary metastasis after s.c. inoculation of 3LL tumors into C57BL/6 mice. The combination of i.pl. and intralesional or i.v. injections of LC 9018 also markedly inhibited pulmonary metastasis in 3LL-bearing mice. The i.pl. administration of LC 9018 into mice induced an increase in the number of thoracic exudate cells (TEC) and the cell population in the TEC was mainly polymorphonuclear leukocytes in the early stage, while macrophages were dominant in the late stage. In addition, in vitro cytolytic activity against 3LL cells and natural killer cell activity of TEC were augmented by the i.pl. administration of LC 9018. Furthermore, i.pl. administration of LC 9018 into the mice rendered their lung macrophages tumoricidal for 3LL cells in vitro. These results show that TEC induced by i.pl. administration of LC 9018 played a key role in the inhibtion of metastasis in 3LL-bearing mice.  相似文献   

15.
Human peripheral blood monocytes from normal donors were isolated by elutriation and differentiated by culture in the presence or absence of various immunomodulators. Cells were harvested between 0 and 24 days and tested for their ability to kill schistosomula of Schistosoma mansoni in vitro as a measure of activation. Freshly isolated monocytes showed no significant cytotoxic activity in the presence or absence of IFN-gamma or LPS. As the cells matured in vitro, there was a slight increase in their inherent toxicity against the parasite, which was greatly enhanced by pretreatment with either IFN-gamma or CSF-1. Optimal antibody-independent larvicidal activity occurred after stimulation with both IFN-gamma and CSF-1, using cells that had matured for at least 7 days in vitro. Under these conditions, killing of up to 70% of the larvae was observed. Although enhanced larvicidal activity was not found to strictly correlate with production of any of several proposed effector molecules examined, activated monocyte-derived macrophages were capable of producing significant amounts of H2O2 and TNF-alpha. These observations indicate that cytokine-activated human monocyte-derived macrophages are able to kill schistosome larvae by an antibody-independent mechanism, as has been observed using murine peritoneal macrophages. Stimulation with multiple differentiation and activation signals, as would occur in vivo, may be required for development of optimal larvicidal activity.  相似文献   

16.
During infection with Trichinella pseudospiralis a strong neutrophil response is evident in the peripheral circulation of the mouse. This study compared the chemotactic response of neutrophils from uninfected, T. pseudospiralis-infected and Trichinella spiralis-infected mice to extracts from adult worms, newborn larvae and muscle-stage larvae of both species of parasite. The chemotactic response of neutrophils from T. pseudospiralis-infected mice to Zymosan-activated mouse serum (ZAMS) was significantly greater than that seen with neutrophils from either uninfected or T. spiralis-infected mice. Unstimulated chemotactic response of neutrophils from these three groups of animals to medium alone was similar. The chemotactic response of neutrophils from the three groups of animals was unaffected by either the concentration or source of serum. The chemotactic response of neutrophils from T. pseudospiralis-infected mice was significantly greater than that observed with cells from uninfected or T. spiralis-infected mice. Among parasite extracts, those from newborn larvae displayed the strongest chemotactic potential for neutrophils. Extracts from muscle larvae of T. spiralis and T. pseudospiralis and extracts of T. spiralis adult worms showed the weakest attraction for neutrophils. Extracts from adult T. pseudospiralis and from newborn larvae of both species elevated the chemotactic response of uninfected mouse neutrophils to a significantly greater level than that seen with ZAMS alone, while a significant reduction in this response was evident only when ZAMS was presented to neutrophils with 500 micrograms of extract from muscle larvae of T. pseudospiralis or T. spiralis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses against infection or to ameliorate immune-based pathologies. To determine whether eriodictyol has immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we investigated the stimulatory effect of eriodictyol on spleen cells isolated from BALB/c mice. Eriodictyol significantly stimulated splenocyte proliferation. However, only B lymphocytes (not T lymphocytes) could be stimulated by eriodictyol in a dose-related manner. Studies assessing potential effect of eriodictyol on innate immunity reported that eriodictyol enhanced significantly the killing activity of natural killer (NK) cells, T lymphocytes, and macrophages. We also demonstrated that eriodictyol inhibited nitric oxide (NO) production and lysosomal enzyme activity in murine peritoneal macrophages cultured ex-vivo, suggesting a potential anti-inflammatory effect in situ. Eriodictyol revealed also a cellular anti-oxidant activity in splenocytes and macrophages. Furthermore, eriodictyol increased catalase activity in spleen cells. From this data, it can be concluded that eriodictyol exhibited an immunomodulatory effect that could be ascribed in part to a cytoprotective effect related to its anti-oxidant activity.  相似文献   

18.
Summary We induced nonspecific killer cells in the local site of delayed-type hypersensitivity against keyhole limpet hemocyanin or ovalbumin. Delayed-type hypersensitivity was induced in the peritoneal cavities of mice, and peritoneal exudate cells (PEC) were collected. These PEC were found to have killer activity toward SP2 and YAC-1 cells (target cells susceptible to natural killer cells) by 4-h 51Cr-release assays. The induction of killer activity in PEC was observed in parallel with the eliciting of delayed-type hypersensitivity in the peritoneal cavity, in which the killer activity was maximum 24–48 h after the antigen challenge, but was not induced in nu/nu mice and was induced in an antigen-specific way. These killer cells did not adhere to nylon wool and had Thy1 and asialo-GM1 antigens on their surfaces. Their precursor cells were also asialo-GM1-positive. These findings indicate that the killer cells probably belong to the NK cell lineage. Results of tumor challenge experiments showed that these killer cells had an antitumor effect in vivo as well as in vitro.  相似文献   

19.
We have shown previously that agonistic anti-CD40 mAb induced T cell-independent antitumor effects in vivo. In this study, we investigated mechanisms of macrophage activation with anti-CD40 mAb treatment, assessed by the antitumor action of macrophages in vitro. Intraperitoneal injection of anti-CD40 mAb into C57BL/6 mice resulted in activation of peritoneal macrophages capable of suppressing B16 melanoma cell proliferation in vitro, an effect that was greatly enhanced by LPS and observed against several murine and human tumor cell lines. Anti-CD40 mAb also primed macrophages in vitro to mediate cytostatic effects in the presence of LPS. The tumoristatic effect of CD40 ligation-activated macrophages was associated with apoptosis and killing of tumor cells. Activation of macrophages by anti-CD40 mAb required endogenous IFN-gamma because priming of macrophages by anti-CD40 mAb was abrogated in the presence of anti-IFN-gamma mAb, as well as in IFN-gamma-knockout mice. Macrophages obtained either from C57BL/6 mice depleted of T and NK cells by Ab treatment, or from scid/beige mice, were still activated by anti-CD40 mAb to mediate cytostatic activity. These results argued against the role of NK and T cells as the sole source of exogenous IFN-gamma for macrophage activation and suggested that anti-CD40 mAb-activated macrophages could produce IFN-gamma. We confirmed this hypothesis by detecting intracytoplasmic IFN-gamma in macrophages activated with anti-CD40 mAb in vivo or in vitro. IFN-gamma production by macrophages was dependent on IL-12. Taken together, the results show that murine macrophages are activated directly by anti-CD40 mAb to secrete IFN-gamma and mediate tumor cell destruction.  相似文献   

20.
Osteopontin (OPN) expression in tumors is associated with more aggressive tumor growth; however, several studies have suggested that OPN as a host protein can regulate tumor growth as well. OPN is produced by macrophages and T cells, and reportedly modifies macrophage function. Here, we have investigated the effect of OPN on macrophage function, and its role in host defense against tumor growth. OPN deficient (-/-) and wild-type (WT) peritoneal macrophages were assessed for their ability to mediate cytotoxicity of tumor cells. Thioglycollate-elicited peritoneal exudate cells (PEC) were stimulated in vitro with interferon-gamma and lipopolysaccharide. [(3)H]Thymidine-labeled ras-transformed tumor cells were then added and (3)H release and nitrite accumulation were measured. OPN -/- PEC exhibited as much as a 70% reduction in cytotoxicity as compared to WT PEC. Tumor cell OPN status, on the other hand, had little effect on the extent of cytotoxicity. Production of nitrite by the PEC correlated with their capacity to kill tumor cells. L-929 cells, which are relatively resistant to nitric oxide-induced cytotoxicity and sensitive to that effected by TNF-alpha, were killed equally well by wild-type and OPN-deficient PEC, suggesting that the effect of OPN is not mediated through TNF-alpha. No difference was seen in the cytotoxicity of resident macrophages from mice of different genotypes, indicating that the defect in the OPN-deficient macrophages may result from altered differentiation in vivo. In support of this idea, we show that the expression of the macrophage markers F4/80 in peritoneal cells and of Mac-2 in spleen cells is altered in OPN -/- mice as compared to WT. These data support the hypothesis that host-derived osteopontin may inhibit tumor growth and provide a mechanism for this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号