首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
We have characterized a voltage-sensitive chloride channel from cardiac sarcoplasmic reticulum (SR) following reconstitution of porcine heart SR into planar lipid bilayers. In 250 mm KCl, the channel had a main conductance level of 130 pS and exhibited two substrates of 61 and 154 pS. The channel was very selective for Cl over K+ or Na+ ( and ). It was permeable to several anions and displayed the following sequence of anion permeability: SCN > I > NO3 Br > Cl > f > HCOO. Single-channel conductance saturated with increasing Cl concentrations (Km= 900 mm and max = 488 pS). Channel activity was voltage dependent, with an open probability ranging from 1.0 around 0 mV to 0.5 at +80 mV. From –20 to +80 mV, channel gating was time-independent. However, at voltages below –40 mV the channel entered a long-lasting closed state. Mean open times varied with voltage, from 340 msec at –20 mV to 6 msec at +80 mV, whereas closed times were unaffected. The channel was not Ca2+-dependent. Channel activity was blocked by disulfonic stilbenes, arylaminobenzoates, zinc, and cadmium. Single-channel conductance was sensitive to trans pH, ranging from 190 pS at pH 5.5 to 60 pS at pH 9.0. These characteristics are different from those previously described for Cl channels from skeletal or cardiac muscle SR.We thank Dr. Barry Pallotta for help with open and closed intervals analysis and Dr. Gerhard Meissner for his suggestions for the preparation of cardiac sarcoplasmic reticulum membranes. This work was supported by a grant from the National Institutes of Health to R.L.R. and a Student Grant-in-Aid from the American Heart Association, North Carolina affiliate to C.T. R.L.R. is an Established Investigator of the American Heart Association.  相似文献   

2.
Cl conductance in cultured embryonic chick cardiac myocytes was characterized using whole-cell patch clamp techniques. Following elimination of cation currents in Na+and K+-free internal and external solutions, the basal whole-cell current was predominantly a Cl current. Cl-sensitive current (I Cl) was defined as the difference between the whole-cell currents recorded in normal and low [Cl] o when measured in the same cell. The whole-cell current in the absence or presence of 10 m cAMP was time independent, displayed outward rectification with the pipette [Cl] < 40 mm, and was not saturated with a physiological Cl gradient. The Cl current was also activated by 1 m forskolin and inhibited by 0.3 mm anthracene-9-carboxylic acid (9-AC). Forskolin was less effective than cAMP (internal dialysis) in activating the Cl current. The cAMP- or forskolin-activated and basal Cl current were reasonably fit by the Goldman-Hodgkin-Katz equation. The calculated P Cl in the presence of cAMP was increased by fiveto sixfold over the basal level. In the presence of 5 mm EGTA to decrease free [Ca2+] i , the whole-cell current could not be stimulated by cAMP, forskolin or IBMX (0.1 mm). These data suggest that cultured chick cardiac myocytes have a low basal Cl conductance, which, as in some mammalian cardiac ventricular myocytes, can be activated by cAMP. However, this study shows that the activation process requires physiological free [Ca2+] i .This study was supported by grants from the National Institutes of Health (HL-17670, HL-27105 and HL-07107) for M.L. and by Institutional funds of the University of Arkansas for Medical Sciences for S.L.We thank Meei-Yueh Liu, Kathleen Mitchell, and Shirley Revels for their technical assistance.  相似文献   

3.
Ion-conducting channels formed in lipid bilayers by diphtheria toxin are highly pH dependent. Among other properties, the channel's single channel conductance and selectivity depend on proton concentrations on either side of the membrane. We have previously shown that a 61 amino acid fragment of DT is sufficient to form a channel having the same pH-dependent single channel properties as that of the intact toxin. This region corresponds to an a-helical hairpin in the recently published crystal structure of DT in solution; the hairpin contains two -helices, each long enough to span a membrane, connected by a loop of about nine residues. This paper reports on the single channel effects of mutations which alter the two negatively charged residues in this loop. Changing Glutamate 349 to neutral glutamine or to positive lysine has no effect on the DT channel's single channel conductance or selectivity. In contrast, mutations of Aspartate 352 to neutral asparagine (DT-D352N) or positive lysine (DT-D352K) cause progressive reductions in single channel conductance at pH 5.3 cis/7.2 trans (in 1 m KCl), consistent with this group interacting electrostatically with ions in the channel. The cation selectivity of these mutant channels is also reduced from that of wild-type channels, a direction consistent with residue 352 influencing permeant ions via electrostatic forces. When both sides of the membrane are at pH 4, the conductance difference between wild-type and DT-D352N channels is minimal, suggesting that Asp 352 (in the wild type) is neutral at this pH. Differences observed between wild-type and DT-D352N channels at pH 4.0 cis/7.2 trans (with a high concentration of permeant buffer in the cis compartment) imply that residue 352 is on or near the trans side of the membrane. Comparing the conductances of wild-type and DT-D352K channels at large (cis) positive voltages supports this conclusion. The trans location of position 352 severely constrains the number of possible membrane topologies for this region.This work was supported by NIH grants AI22021, AI22848 (R.J.C.), T32 GM07288 (J.A.M.) and GM29210 (A.F.).  相似文献   

4.
The conductance of channels formed by diphtheria toxin (DT) in lipid bilayer membranes depends strongly on pH. We have previously shown that a 61 amino acid region of the protein, denoted TH8-9, is sufficient to form channels having the same pH-dependent conductance properties as those of whole toxin channels. One residue in this region, Aspartate 352, is responsible for all the dependence of single channel conductance on trans pH, whereas another, Glutamate 349, has no effect. Here, we report that of the seven remaining charged residues in the TH8-9 region, mutations altering the charge on H322, H323, H372, and R377 have minimal effects on single channel conductance; mutations of Glutamates 326, 327, or 362, however, significantly affect single channel conductance as well as its dependence on cis pH. Moreover, Glutamate 362 is titratable from both the cis and trans sides of the membrane, suggesting that this residue lies within the channel; it is more accessible, however, to cis than to trans protons. These results are consistent with the membrane-spanning topology previously proposed for the TH8-9 region, and suggest a geometric model for the DT channel.This work was supported by NIH grants AI22021, AI22848 (R.J.C.), T32 GM07288 (J.A.M.) and GM29210 (A.F.).  相似文献   

5.
The amphibian skin, widely used for studying the transepithelial passage of electrolytes, exhibits anion pathways relatively specific for Cl(-). We studied the effect of HgCl(2), 1.0 x 10(-4) M on its electrical parameters and unidirectional anion fluxes. In the presence of Cl(-), the transepithelial conductance (G) of the isolated skin of the Bufo arenarum toad increased considerably following exposure to HgCl(2), whereas short-circuit current (SCC)--reflecting transepithelial Na(+) transport-underwent only slight stimulation. Following the blockade of Na(+) intake by amiloride, 1.0 x 10(-4) M, the removal of Cl(-) from the solution bathing the epidermal border of the skin brought about a decrease in G, and gave rise to a gradient-induced SCC (SCCg) consistent with transepithelial passage of Cl(-) along its gradient. Addition of mercaptoethanol, 5.0 x 10(-3) M to the bath containing Hg(2+) fully reversed these effects. The increase in G was accompanied by an increase in the unidirectional (epidermal to dermal) fluxes of (36)Cl(-) and (131)I(-), and a decrease in the passage of (99m)TcO(4)(-). These results show the effects of HgCl(2) to be similar to those of theophylline, although exhibiting a different selectivity. Our data suggest that anion passage following exposure to HgCl(2) is, like that stimulated by theophylline, predominantly if not exclusively transcellular, and does not involve a significant opening of the tight junctions.  相似文献   

6.
The addition of haemocyanin from Megathura crenulata to the aqueous phase bathing a bilayer lipid membrane resulted in the formation of ionic channels. With an applied voltage biased negative with respect to the haemocyanin-containing side, a single conductance state was observed above pH 7.0. Below pH 7.0 several conductance states were manifested, and the maximum conductance observed for a single channel decreased with decreasing pH. Extensive treatment of the haemocyanin with diethylpyrocarbonate, which reacts primarily with histidine residues, completely prevented the formation of ionic channels; however, milder treatment produced a chemically modified haemocyanin that was capable of forming ionic channels with modified conductance properties. Each channel conductance was typically much lower than that of the channels formed from unmodified haemocyanin, and there was now substantial variation in conductance from channel to channel. Following the use of hydroxylamine to remove the carbethoxy groups from the modified haemocyanin, it formed ionic channels that were restored to the original unit channel conductance.  相似文献   

7.
The protein antibiotic colicin N forms ion-permeable channels through planar lipid bilayers. Channels are induced when positive voltages higher than +60 mV are applied. Incorporated channels activate and inactivate in a voltage-dependent fashion. It is shown that colicin N undergoes a transition between an “acidic” and a “basic” channel form which are distinguishable by different voltage dependences. The single-channel conductance is non-ohmic and strongly dependent on pH, indicating that titratable groups control the passage of ions through the channel. The ion selectivity of colicin N channels is influenced by the pH and the lipid composition of the bilayer membrane. In neutral membranes the channel undergoes a transition from slightly cation-selective to slightly anion-selective when the pH is changed from 7 to 5. In lipid membranes bearing a negative surface charge the channel shows a more pronounced cation selectivity which decreases but does not reverse upon lowering the pH from 7 to 5. The high degree of similarity between the channel characteristics of colicin A and N suggests that the channels share common features in their molecular structure. Offprint requests to: F. Pattus  相似文献   

8.
Sodium- and potassium-activated adenosine triphosphatases (Na,K-ATPase) is the ubiquitous active transport system that maintains the Na+ and K+ gradients across the plasma membrane by exchanging three intracellular Na+ ions against two extracellular K+ ions. In addition to the two cation binding sites homologous to the calcium site of sarcoplasmic and endoplasmic reticulum calcium ATPase and which are alternatively occupied by Na+ and K+ ions, a third Na+-specific site is located close to transmembrane domains 5, 6 and 9, and mutations close to this site induce marked alterations of the voltage-dependent release of Na+ to the extracellular side. In the absence of extracellular Na+ and K+, Na,K-ATPase carries an acidic pH-activated, ouabain-sensitive “leak” current. We investigated the relationship between the third Na+ binding site and the pH-activated current. The decrease (in E961A, T814A and Y778F mutants) or the increase (in G813A mutant) of the voltage-dependent extracellular Na+ affinity was paralleled by a decrease or an increase in the pH-activated current, respectively. Moreover, replacing E961 with oxygen-containing side chain residues such as glutamine or aspartate had little effect on the voltage-dependent affinity for extracellular Na+ and produced only small effects on the pH-activated current. Our results suggest that extracellular protons and Na+ ions share a high field access channel between the extracellular solution and the third Na+ binding site.  相似文献   

9.
花背蟾蜍蝌蚪皮肤在类坏死条件下超微结构的变化~*   总被引:1,自引:0,他引:1  
已知发生类坏死的无尾两栖类蝌蚪皮肤,可加速被眼诱导为角膜的进程。采用弱酸(0.01N醋酸)和弱碱(0.001N氨水)处理花背蟾蜍蝌蚪皮肤使之发生类坏死,对比观察了正常和发生类坏死皮肤的超微结构,结果发现皮肤在类坏死条件下发生下列变化:(1)表皮细胞内的张力原纤维显得疏松,有变粗及聚集的现象,弱酸处理者更明显;(2)表皮细胞中细胞器减少,细胞质内出现大量液泡;相邻细胞的细胞间隙变狭窄;(3)表皮细胞核内的染色质分布不均匀,浓缩为较大的团块,使核内出现不规则的空隙;(4)基膜中胶原纤维明暗相间的条纹结构较模糊。文中对类坏死条件下皮肤超微结构的变化和加速角膜诱导进程间的可能关系进行了讨论。  相似文献   

10.
Summary A feature of the current-voltage (I/V) and conductance-voltage (G/V) characteristics is described, which can be attributed to the action of the proton pump at theChara plasmalemma. The study of pH dependence in the range 4.5 to 11.0 and exposure to metabolic inhibitors confirm the pump involvement.A model describing kinetics of H+-extruding ATPase (Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981.J. Membrane Biol. 63:165–190) is fitted to the data yielding theI/V andG/V relationships of theChara proton pump. The results show that the stoichiometry is 1H+1ATP.  相似文献   

11.
Lysenin forms unitary large conductance pores in artificial bilayer membranes containing sphingomyelin. A population of lysenin pores inserted into such a bilayer membrane exhibited a dynamic negative conductance region, as predicted by a simple two-state model for voltage-gated channels. The recorded I-V curves demonstrated that lysenin pores inserted into the bilayer are uniformly oriented. Additionally, the transition between the two-states was affected by changes in the monovalent ion concentration and pH, pointing towards an electrostatic interaction governing the gating mechanism.  相似文献   

12.
Members of the CLC protein family of Cl channels and transporters display the remarkable ability to function as either chloride channels or Cl/H+ antiporters. Due to the intracellular localization of ClC-6 and ClC-7, it has not yet been possible to study the biophysical properties of these members of the late endosomal/lysosomal CLC branch in heterologous expression. Whereas recent data suggest that ClC-7 functions as an antiporter, transport characteristics of ClC-6 have remained entirely unknown. Here, we report that fusing the green fluorescent protein (GFP) to the N terminus of ClC-6 increased its cell surface expression, allowing us to functionally characterize ClC-6. Compatible with ClC-6 mediating Cl/H+ exchange, Xenopus oocytes expressing GFP-tagged ClC-6 alkalinized upon depolarization. This alkalinization was dependent on the presence of extracellular anions and could occur against an electrochemical proton gradient. As observed in other CLC exchangers, ClC-6-mediated H+ transport was abolished by mutations in either the “gating” or “proton” glutamate. Overexpression of GFP-tagged ClC-6 in CHO cells elicited small, outwardly rectifying currents with a Cl > I conductance sequence. Mutating the gating glutamate of ClC-6 yielded an ohmic anion conductance that was increased by additionally mutating the “anion-coordinating” tyrosine. Additionally changing the chloride-coordinating serine 157 to proline increased the NO3 conductance of this mutant. Taken together, these data demonstrate for the first time that ClC-6 is a Cl/H+ antiporter.  相似文献   

13.
目的将铁离子导入到大鼠的感觉运动皮质内,造成大鼠的外伤后癫痫的动物模型,观察大鼠术后癫痫发作的行为学改变。方法用离子导人法将铁离子导人到SD大鼠大脑皮质内,通电时间为10min,通电电流为200μA。对照组大鼠给予相同的手术操作,但不导入铁离子。结果实验组内20只大鼠有18只出现癫痫发作,癫痫模型制作成功率为90%;对照组内20只大鼠内有一只出现癫痫发作,癫痫模型制作成功率为5%。结论用离子导人法制作大鼠外伤后癫痫动物模型的通电电流以200μA为最佳条件,通电时间为10min。制造出来的模型的成功率较高,且为急性模型。  相似文献   

14.
    
Interleukin-13 (IL-13) has been linked to the pathogenesis of inflammatory diseases of the gastrointestinal tract. It is postulated that IL-13 drives inflammatory lesions through the modulation of both hematopoietic and nonhematopoietic cell function in the intestine. To delineate the relevant contribution of elevated levels of intestinal IL-13 to intestinal structure and function, we generated an intestinal IL-13 transgenic mouse (iIL-13Tg). We show that constitutive overexpression of IL-13 in the small bowel induces modification of intestinal epithelial architecture (villus blunting, goblet cell hyperplasia, and increased epithelial proliferation) and epithelial function (altered basolateral → apical Cl(-) ion conductance). Pharmacological analyses in vitro and in vivo determined that elevated Cl(-) conductance is mediated by altered cystic fibrosis transmembrane conductance regulator expression and activity. Generation of iIL-13Tg/Il13rα1(-/-), iIL-13Tg/Il13rα2(-/-), and iIL-13Tg/Stat6(-/-) mice revealed that IL-13-mediated dysregulation of epithelial architecture and Cl(-) conductance is dependent on IL-13Rα1 and STAT-6. These observations demonstrate a central role for the IL-13/IL-13Rα1 pathway in the regulation of intestinal epithelial cell Cl(-) secretion via up-regulation of cystic fibrosis transmembrane conductance regulator, suggesting an important role for this pathway in secretory diarrhea.  相似文献   

15.
We have investigated the electrophysiological basis of potassium inward rectification of the KAT1 gene product from Arabidopsis thaliana expressed in Xenopus oocytes and of functionally related K+ channels in the plasma membrane of guard and root cells from Vicia faba and Zea mays. The whole-cell currents passed by these channels activate, following steps to membrane potentials more negative than –100 mV, with half activation times of tens of milliseconds. This voltage dependence was unaffected by the removal of cytoplasmic magnesium. Consequently, unlike inward rectifier channels of animals, inward rectification of plant potassium channels is an intrinsic property of the channel protein itself. We also found that the activation kinetics of KAT1 were modulated by external pH. Decreasing the pH in the range 8.5 to 4.5 hastened activation and shifted the steady state activation curve by 19 mV per pH unit. This indicates that the activity of these K+ channels and the activity of the plasma membrane H+-ATPase may not only be coordinated by membrane potential but also by pH. The instantaneous current-voltage relationship, on the other hand, did not depend on pH, indicating that H+ do not block the channel. In addition to sensitivity towards protons, the channels showed a high affinity voltage dependent block in the presence of cesium, but were less sensitive to barium. Recordings from membrane patches of KAT1 injected oocytes in symmetric, Mg2+-free, 100 mM-K+, solutions allowed measurements of the current-voltage relation of single open KAT1 channels with a unitary conductance of 5 pS. We conclude that the inward rectification of the currents mediated by the KAT1 gene product, or the related endogenous channels of plant cells, results from voltage-modulated structural changes within the channel proteins. The voltage-sensing or the gating-structures appear to interact with a titratable acidic residue exposed to the extracellular medium. Correspondence to: R. Hedrich  相似文献   

16.
Summary The fine structure of the skin and its importance in chloride outfluxes were investigated in a sea-water teleost, the shanny (Blennius pholis L.).The epidermis is composed of three cells types: epithelial cells, mucous cells and chloride cells. These chloride cells typically contain a great number of mitochondria and an extensive agranular reticulum extending through the whole cell body. They open at the surface of the epidermis into an apical pit. An undifferentiated small cell is often observed near these chloride cells and probably corresponds to the adjacent chloride cell.The values of chloride outfluxes through the skin and the gills are respectively 5333±884 Eq·h–1·kg–1 and 4479±2521 Eq·h–1·kg –1; n=6; t=13±0.5°C. Thus the ratio between skin chloride outflux and total chloride outflux is 64.7±9.3%.  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations reducing the activity of CFTR result in the genetic disease cystic fibrosis. Two of the most common mutations causing a severe phenotype are G551D and ΔF508. Previously we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) potentiates the activity of G551D by ∼7-fold. Here we show that 2′-deoxy-ATP (dATP), but not 3′-deoxy-ATP, increases the activity of G551D-CFTR by ∼8-fold. We custom synthesized N6-(2-phenylethyl)-2′-deoxy-ATP (P-dATP), an analog combining the chemical modifications in dATP and P-ATP. This new analog enhances G551D current by 36.2 ± 5.4-fold suggesting an independent but energetically additive action of these two different chemical modifications. We show that P-dATP binds to ABP1 to potentiate the activity of G551D, and mutations in both sides of ABP1 (W401G and S1347G) decrease its potentiation effect, suggesting that the action of P-dATP takes place at the interface of both NBDs. Interestingly, P-dATP completely rectified the gating abnormality of ΔF508-CFTR by increasing its activity by 19.5 ± 3.8-fold through binding to both ABPs. This result highlights the severity of the gating defect associated with ΔF508, the most prevalent disease-associated mutation. The new analog P-dATP can be not only an invaluable tool to study CFTR gating, but it can also serve as a proof-of-principle that, by combining elements that potentiate the channel activity independently, the increase in chloride transport necessary to reach a therapeutic target is attainable.  相似文献   

18.
Fluctuation of surface charge on pore walls provides a realistic, additional mechanism for generating fluctuation of ionic current and ionic selectivity in narrow pores.  相似文献   

19.
Presented here is a biophysical cell model which can exhibit low-frequency repetitive activity and bursting behavior. The model is developed from previous models (Av-Ron et al. 1991, 1993) for excitability, oscillations and bursting. A stepwise development of the present model shows the contribution of a transient potassium current (I A ) to the overall dynamics. By changing a limited set of model parameters one can describe different firing patterns; oscillations with frequencies ranging from 2–200 Hz and a wide range of bursting behaviors in terms of the durations of bursting and quiescence, peak firing frequency and rate of change of the firing frequency.  相似文献   

20.
  总被引:1,自引:0,他引:1  
The effect of growth medium NaCl concentration on the fatty acid composition of phospholipids of 3 strains of Saccharomyces cerevisiae and 6 osmotolerant yeast strains was examined. The S. cerevisiae strains were characterized by a high content of palmitoleic (C16:1) acid and by having no polyunsaturated C18 acids, whereas the osmotolerant strains had a low content of C16:1 and a high proportion of polyenoic C18 acids. An increase of the NaCl concentration from 0% to 8% resulted in a decrease of the cellular phospholipid content on a dry-weight basis, for all strains but one of the osmotolerant strains. For the S. cerevisiae strains increased salinity produced a slight decrease of the proportion of C16 fatty acids with a concomitant increase of C18 acids, whereas the osmotolerant strains showed an increase of the relative content of oleic acid (C18:1) at the expense of the proportion of polyenoic C18 acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号