首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary This paper reports experiments designed to assess the relations between net salt absorption and transcellular routes for ion conductance in single mouse medullary thick ascending limbs of Henle microperfusedin vitro. The experimental data indicate that ADH significantly increased the transepithelial electrical conductance, and that this conductance increase could be rationalized in terms of transcellular conductance changes. A minimal estimate (G c min ) of the transcellular conductance, estimated from Ba++ blockade of apical membrane K+ channels, indicated thatG c min was approximately 30–40% of the measured transepithelial conductance. In apical membranes, K+ was the major conductive species; and ADH increased the magnitude of a Ba++-sensitive K+ conductance under conditions where net Cl absorption was nearly abolished. In basolateral membranes, ADH increased the magnitude of a Cl conductance; this ADH-dependent increase in basal Cl conductance depended on a simultaneous hormone-dependent increase in the rate of net Cl absorption. Cl removal from luminal solutions had no detectable effect onG e , and net Cl absorption was reduced at luminal K+ concentrations less than 5mm; thus apical Cl entry may have been a Na+,K+,2Cl cotransport process having a negligible conductance. The net rate of K+ secretion was approximately 10% of the net rate of Cl absorption, while the chemical rate of net Cl absorption was virtually equal to the equivalent short-circuit current. Thus net Cl absorption was rheogenic; and approximately half of net Na+ absorption could be rationalized in terms of dissipative flux through the paracellular pathway. These findings, coupled with the observation that K+ was the principal conductive species in apical plasma membranes, support the view that the majority of K+ efflux from cell to lumen through the Ba++-sensitive apical K+ conductance pathway was recycled into cells by Na+,K+,2Cl cotransport.  相似文献   

2.
Summary We have recently shown that stimulation of electrogenic HCO 3 secretion is accompanied by a simultaneous increase in short-circuit current (I sc, equivalent to HCO 3 secretion rate under these conditions), apical membrane capacitance (C a , proportional to membrane area), and apical membrane conductance (G a , proportional to membrane ionic permeability). The current experiments were undertaken to explore the ionic basis for the increase inG a and the possibility that the rate of electrogenic HCO 3 secretion is regulated by changes inG a . Membrane electrical parameters were measured using impedance-analysis techniques before and after stimulation of electrogenic HCO 3 secretion with cAMP in three solutions which contained different chloride concentrations. In another series of experiments, the effects of an anion channel blocker, anthracene-9-carboxylic acid (9-AA), were measured after stimulation of electrogenic HCO 3 secretion with cAMP. The major conclusions are: (i) a measurable apical Cl conductance exists in control hemibladders; (ii) the transport-associated increase inG a includes a Cl-conductive component; (iii)G a also appears to reflect a HCO 3 conductance; (iv) the relative magnitudes of the apical membrane conductances to Cl and HCO 3 are similar; (v) 9-AA reducesG a andI sc appear cAMP-stimulated hemibladders; and (vi) alterations inI sc appear to be mediated by changes inG a .  相似文献   

3.
Summary Microelectrode techniques were applied to the rabbit isolated perfused cortical collecting duct to provide an initial quantitation and characterization of the cell membrane and tight junction conductances. Initial studies demonstrated that the fractional resistance (ratio of the resistance of the apical cell membrane to the sum of the resistances of the apical and basolateral membranes) was usually independent of the point along the tubule of microelectrode impalement—implicating little cell-to-cell coupling—supporting the application of quantitative techniques to the cortical collecting duct. It was demonstrated that in the presence of amiloride, either reduction in the luminal pH or the addition of barium to the perfusate selectively reduced the apical membrane potassium conductance. From the changes inG te and fractional resistance upon reducing the luminal pH or addition of barium to the perfusate, the transepithelial, apical membrane, basolateral membrane and tight junction conductances were estimated to be 9.3, 6.7, 8.1 and 6.0 mS cm–2, respectively. Ninety to ninety-five percent of the apical membrane conductance reflected the barium-sensitive potassium conductance in the presence of amiloride with an estimated potassium permeability of 1.1×10–4 cm sec–1. Reduction in the perfusate pH to 4.0 caused a 70% decrease in the apical membrane potassium conductance, implying a blocking site with an acidic group having a pK a near 4.4. It is concluded that both the transcellular and paracellular pathways of the cortical collecting tubule have high ionic conductances, and that the apical membrane conductance primarily reffects a high potassium conductance. Furthermore, both reduction in the perfusate pH and addition of barium to the perfusate selectively block the apical potassium channels, although the site of inhibition likely differs since the two ions display markedly different voltage-dependent blocks of the channel.  相似文献   

4.
Summary The potential dependence of unidirectional36Cl fluxes through toad skin revealed activation of a conductive pathway in the physiological region of transepithelial potentials. Activation of the conductance was dependent on the presence of Cl or Br in the external bathing solution, but was independent of whether the external bath was NaCl-Ringer's, NaCl-Ringer's with amiloride, KCl-Ringer's or choline Cl-Ringer's To partition the routes of the conductive Cl ion flow, we measured in the isolated epithelium with double-barrelled microelectrodes apical membrane potentialV a , and intracellular Cl activity,a Cl c , of the principal cells indentified by differential interference contrast microscopy. Under short-circuit conditionsI sc=27.0±2.0 A/cm2, with NaCl-Ringer's bathing both surfaces,V a was –67.9±3.8mV (mean ±se,n=24, six preparations) anda Cl c was 18.0±0.9mM in skins from animals adapted to distilled water. BothV a anda Cl a were found to be positively correlated withI sc (r=0.66 andr=0.70, respectively). In eight epithelia from animals adapted to dry milieu/tap waterV a anda Cl c were measured with KCl Ringer's on the outside during activation and deactivation of the transepithelial Cl conductance (G Cl) by voltage clamping the transepithelial potential (V) at 40 mV (mucosa positive) and –100 mV. AtV=40 mV; i.e. whenG Cl was deactivated,V a was –70.1±5.0 mV (n=15, eight preparations) anda Cl c was 40.0±3.8mm. The fractional apical membrane resistance (fR a) was 0.69±0.03. Clamping toV=–100 mV led to an instantaneous change ofV a to 31.3±5.6 mV (cell interior positive with respect to the mucosal bath), whereas neithera Cl c norfR a changed significantly within a 2 to 5-min period during whichG Cl increased by 1.19±0.10 mS/cm2. WhenV was stepped back to 40 mV,V a instantaneously shifted to –67.8±3.9 mV whilea Cl c andfR a remained constant during deactivation ofG Cl. Similar results were obtained in epithelia impaled from the serosal side. In 12 skins from animals adapted to either tap water or distilled water the density of mitochondria-rich (D MRC) cells was estimated and correlated with the Cl current (I Cl though the fully activated (V=–100mV) Cl conductance). A highly significant correlation was revealed (r=–0.96) with a slope of –2.6 nA/m.r. (mitochondria-rich cell and an I-axis intercept not significantly different from zero. In summary, the voltage-dependent Cl currents were not reflected infR a anda Cl a of the principal cells but showed a correlation with the m.r. cell density. We conclude that the pricipal cells do not contribute significantly to the voltage-dependent Cl conductance.  相似文献   

5.
Summary Cystic fibrosis (CF) is characterized by abnormal epithelial Cl conductance (GCl). In vitro studies that have shown that cAMP regulation is an intrinsic property of the CF-affected GCl(CF-GCl) have been carried out previously on cultured secretory cells and on nonepithelial cells. Even though GCl in absorption is defective in CF, a clear demonstration of cAMP regulation of CF-GCl in a purely absorptive tissue is lacking. We studied the cAMP regulation of CF-GCl in the microperfused intact human reabsorptive sweat duct. About 40% of the ducts responded to cAMP (responsive) while the remainder of the ducts did not. In responsive ducts, cAMP-elevating agents: -adrenergic agonist isoproterenol (IPR), CPT-cAMP, forskolin, theophylline or IBMX increased G tby about 2.3-fold (n = no. of ducts = 8). Removal of media Cl, but not amiloride pretreatment (in the lumen), abolished the cAMP response, indicating exclusive activation of GCl. cAMP activated both apical and basolateral GCl. cAMP hyperpolarized gluconate: Cl (lumen: bath) transepithelial bionic potentials (V t=–20.3±5.2 mV, mean ±se, n=9) and transepithelial 3 1 luminal NaCl dilution diffusion potentials (V t=–8.8±2.9 mV, n=5). cAMP activated basolateral GCl as indicated by increased bi-ionic (gluconate: Cl, bath: lumen) diffusion potentials (by about 12 mV). The voltage divider ratio in symmetric NaCl solutions increased by 60%. Compared to responsive ducts, nonresponsive ducts were characterized by smaller spontaneous transepithelial potentials in symmetrical Ringer's solution (V t=–6.9±0.8 mV, n=24, nonresponsive vs. –19.4±1.8 mV, n=22, responsive ducts) but larger bi-ionic potentials (–94±6 mV, n=35, nonresponsive vs. –65±5 mV, n=17, responsive ducts) and dilution diffusion potentials (–40±5 mV, n=11, nonresponsive vs. –29±3 mV, n=7, responsive ducts). These results are consistent with an inherently (prestimulus) maximal activation of GCl in nonresponsive ducts and submaximal activation of GCl in responsive ducts. We conclude that cAMP activates CF-G Cl which is expressed and abnormal in both apical and basal membranes of this absorptive epithelium in CF.Abbreviations CF cystic fibrosis - G t transepithelial conductance - V b electrical potential across the basolateral membrane - V a electrical potential across the apical membrane - V t transepithelial potential - V b transepithelial currentinduced voltage deflections across the basolateral membrane - V a transepithelial current-induced voltage deflections across the apical membrane - V t transepithelial current-induced voltage deflection across the epithelium - VDR voltage divider ratio - GCl transepithelial Cl conductance - CF-GCl cystic fibrosis-affected Cl conductance - EMF electromotive force - IPR isoproterenol - IBMX 3-isobutyl-1-methylxanthine - CPT-cAMP chlorophenylthio-adenosine 3-5 cyclic monophosphate - PGE2 prostaglandin E2  相似文献   

6.
Summary A simple method of measuring proton/hydroxide conductance (G H/OH) through planar lipid bilayer membranes is described. First the total conductance (G m ) is measured electrically. Then the H+/OH transference number (T H/OH) is estimated from the diffusion potential (V m ) produced by a transmembrane pH gradient. The pH gradient is produced by a pair of buffered solutions which have identical concentrations of all ions except H+ and OH. Thus,V m is due entirely to H+/OH diffusion andG H/OH can be calculated from the relations,V m =T H/OH E H/OH andG H/OH=T H/OH G m , whereE H/OH is the equilibrium potential for H+ and OH. In bilayers made from bacterial phosphatidylethanolamine (PE) inn-decane,G H/OH is nearly independent of pH, ranging from about 10–9 S cm–2 at pH 1.6 to 10–8 S cm–2 at pH 10.5. BecauseG H/OH is nearly independent of pH, the calculated permeability coefficients to H+ and/or OH are extremely pH dependent, which partly explains the wide range of values reported for phospholipid vesicles and biological membranes.G H/OH appears to be independent of the membrane surface charge, because titrating either the phosphate or the amino group of PE has little effect onG H/OH.G H/OH is reduced about 10-fold when the water activity is reduced 33% by replacement with glycerol. Although the mechanism of H+/OH conductance is not known, the relation betweenG H/OH and water activity suggests that several water molecules are involved in the H+/OH transport process.  相似文献   

7.
Summary Chloride channels from rat colonic enterocytes were studied using the patch-clamp technique. After removal of mucus, inside-out patches were excised from the apical membrane of intact epithelium located at the luminal surface. They contained spontaneously switching Cl channels with a conductance of 35–40 pS. The channels were blocked reversibly by anthracene-9-carboxylic acid (1mm).In excised patches from single enterocytes, isolated by calcium removal, the Cl channels were studied in more detail. TheI–V relation was linear between ±80 mV. The selectivity was I>Br>Cl=NO 3 >F=HCO 3 .Thirty pS Cl channels were also found on the basolateral membrane of crypts isolated by brief calcium removal. TheI–V curve of these Cl channels was also linear.The results provide direct evidence for the existence of Cl channels in the apical membrane of surface cells in colonic mucosa. The properties of these channels are similar to those previously observed when incorporating membrane vesicles into planar lipid bilayers. Both results support the validity of the theoretical models describing intestinal secretion.  相似文献   

8.
The Cl conductance in isolated skin of frogs (Rana catesbeiana) acclimated to 30 mM solutions of NaCl, Na2SO4, MgCl2 and distilled water (DW) was studied. Transepithelial potential difference (PDtrans), short-circuit current (ISC) and total conductance (Gt) were measured under conditions such that there was Cl flux in the presence and absence of Na+ transport. The Cl content of the mucosal solution was acutely replaced with SO42− or gluconate to evaluate the effect of removal of Cl conductance on electrophysiological parameters. Mitochondria-rich cell density (DMRC) was also measured. Skins from frogs acclimated to NaCl and Na2SO4 showed the lowest and the highest DMRC, respectively, but no difference could be found between the skins from frogs acclimated to DW and MgCl2 indicating that DMRC is not unconditionally dependent on environmental Cl in this species. Frogs acclimated to NaCl showed marked differences when compared to the other groups: the highest Gt, probably represented by a higher paracellular conductance; the lowest transepithelial electrical potential difference which remained invariant after replacement of mucosal Cl with SO42− or replacement of mucosal Cl with gluconate and an inwardly oriented positive current in the absence of bilateral Na+.  相似文献   

9.
The whole-cell patch-clamp technique has been used to study membrane currents in cultured rabbit medullary thick ascending limb (MTAL) epithelial cells. A Ca2+-activated K+ current was characterized by its voltage-dependent and Ca2+-dependent properties. When the extracellular K+ ion concentration was increased from 2 to 140 mm, the rereversal potential (Ek) was shifted from –85 to 0 mV with a slope of 46 mV per e-fold change. The Ca2+-activated K+ current is blocked by charybdotoxin (CTX) in a manner similar to the apical membrane Ca2+-activated K+ channel studied with the single channel patch-clamp technique. The results suggest that the Ca2+-activated K+ current is the predominant, large conductance and Ca2+-dependent K+ pathway in the cultured MTAL cell apical membrane. The biophysical properties and physiological regulation of a Cl current were also investigated. This current was activated by stimulation of intracellular cAMP using forskolin and isobutyl-1-methylxanthine (IBMX). The current-voltage (I–V) relationship of the Cl current showed an outward-rectifying pattern in symmetrical Cl solution. The Cl selectivity of the whole-cell current was confirmed by tail current analysis in different Cl concentration bath solutions. Several Cl channel blockers were found to be effective in blocking the outward-rectifying Cl current in MTAL cells. The cAMP-dependent Cl transport in MTAL cells was further confirmed by measuring changes in the intensity of Cl sensitive dye using fluorescence microscopy. These results suggest that the Cl channel in the apical or basolateral membrane of MTAL cells may be regulated by cAMP-dependent protein-kinase-induced phosphorylation.This study was supported by the National Institutes of Health grants GM46834 to L.L. and DK32753 to W.B.G., and by a Grant-in-Aid from the American Heart Association of Ohio to L.L.  相似文献   

10.
The sensitivity to external pH of Cl- absorption was studied in isolated stripped intestinal mucosa of the eel, Anguilla anguilla, mounted in Ussing chambers. Short-circuit current, transepithelial potential difference and conductance were measured in bathing solutions containing various combinations of HCO3 --concentration (0–25 mmol·l-1), partial pressure of CO2 (0–76 mm Hg) and pH (6.9–7.9). A linear relationship was found between pH and short-circuit current in the range of pH studied both in HCO3 -/CO2 Ringer and in Hepes Ringer. The pH effect was almost completely reversible. It was not affected by the presence of mucosal Ba2+ (10-3 mol·l-1) but it was inhibited by the presence of luminal (10-5 mol·l-1) or serosal (10-4 mol·l-1) bumetanide. The results obtained suggest that the Cl- absorption in the European eel intestine is pH sensitive. The data do not indicate whether the pH affects directly the Na+–K+–Cl- cotransport and/or the basolateral Cl- conductance or other mechanisms indirectly linked to Cl- absorption.Abbreviations g t transepithelial conductance - Hepes N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid - I sc short circuit current - R t transepithelial resistence - V t transepithelial potential difference  相似文献   

11.
The proton/hydroxide (H+/OH) permeability of phospholipid bilayer membranes at neutral pH is at least five orders of magnitude higher than the alkali or halide ion permeability, but the mechanism(s) of H+/OH transport are unknown. This review describes the characteristics of H+/OH permeability and conductance through several types of planar phospholipid bilayer membranes. At pH7, the H+/OH conductances (G H/OH) range from 2–6 nS cm–2, corresponding to net H+/OH permeabilities of (0.4–1.7)×10–5 cm sec–1. Inhibitors ofG H/OH include serum albumin, phloretin, glycerol, and low pH. Enhancers ofG H/OH include chlorodecane, fatty acids, gramicidin, and voltages >80 mV. Water permeability andG H/OH are not correlated. The characteristics ofG H/OH in fatty acid (weak acid) containing membranes are qualitatively similar to the controls in at least eight different respects. The characteristics ofG H/OH in gramicidin (water wire) containing membranes are qualitatively different from the controls in at least four different respects. Thus, the simplest explanation for the data is thatG H/OH in unmodified bilayers is due primarily to weakly acidic contaminants which act as proton carriers at physiological pH. However, at low pH or in the presence of inhibitors, a residualG H/OH remains which may be due to water wires, hydrated defects, or other mechanisms.  相似文献   

12.
Short-circuit current (I sc ), transepithelial conductance (G t ), electrical capacitance (C T ) and the fluctuation in I sc were analyzed in polarized epithelial cells from the distal nephron of Xenopus laevis (A6 cell line). Tissues were incubated with Na+- and Cl-free solutions on the apical surface. Basolateral perfusate was NaCl-Ringer. Agents that increase cellular cAMP evoked increases in G t , C T , I sc and generated a Lorentzian I sc -noise. The responses could be related to active, electrogenic secretion of Cl. Arginine-vasotocin and oxytocin caused a typical peak-plateau response pattern. Stimulation with a membrane-permeant nonhydrolyzable cAMP analogue or forskolin showed stable increases in G t with only moderate peaking of I sc . Phosphodiesterase inhibitors also stimulated Cl secretion with peaking responses in G t and I sc . All stimulants elicited a spontaneous Lorentzian noise, originating from the activated apical Cl channel, with almost identical corner frequency (40–50 Hz). Repetitive challenge with the hormones led to a refractory behavior of all parameters. Activation of the cAMP route could overcome this refractoriness. All agents caused C T , a measure of apical membrane area, to increase in a manner roughly synchronous with G t . These results suggest that activation of the cAMP-messenger route may, at least partly, involve exocytosis of a vesicular Cl channel pool. Apical flufenamate depressed Cl current and conductance and apparently generated blocker-noise. However, blocking kinetics extracted from noise experiments could not be reconciled with those obtained from current inhibition, suggesting the drug does not act as simple open-channel inhibitor. Received: 20 May 1998/Revised: 8 September 1998  相似文献   

13.
Summary This study is concerned with the short-circuit current,I sc, responses of the Cl-transporting cells of toad skin submitted to sudden changes of the external Cl concentration. [Cl]0. Sudden changes of [Cl]0, carried out under apical membrane depolarization, allowed comparison of the roles of [Cl]0 and [Cl]cell on the activation of the apical Cl pathways. Equilibration of shortcircuited skins symmetrically in K-Ringer's solutions of different Cl concentrations permitted adjustment of [Cl]cell to different levels. For a given Cl concentration (in the range of 11.7 to 117mm) on both sides of a depolarized apical membrane, this structure exhibits a high Cl permeability,P (Cl)apical. On the other hand, for the same range of [Cl]cell but with [Cl]0=0,P (Cl)apical is reduced to negligible values. These observations indicate that when the apical membrane is depolarizedP (Cl)apical is modulated by [Cl]0; in the absence of external Cl ions, intracellular Cl is not sufficient to activateP (Cl)apical. Computer simulation shows that the fast Cl currents induced across the apical membrane by sudden shifts of [Cl]0 from a control equilibrium value strictly follow the laws of electrodiffusion. For each experimental group, the computer-generatedI sc versus ([Cl]cell–[Cl]0) curve which best fits the experimental data can only be obtained by a unique pair ofP (Cl)apical andR b (resistance of the basolateral membrane), thus allowing the calculation of these parameters. The electrodiffusional behavior of the net Cl flux across the apical membrane supports the channel nature of the apical Cl pathways in the Cl-transporting cell. Cl ions contribute significantly to the overall conductance of the basolateral membrane even in the presence of a high K concentration in the internal solution.  相似文献   

14.
Summary The modulation of ion transport pathways in filtergrown monolayers of the Cl-secreting subclone (19A) of the human colon carcinoma cell line HT-29 by muscarinic stimulation was studied by combined Ussing chamber and microimpalement experiments.Basolateral addition of 10–4 m carbachol induced a complex poly-phasic change of the cell potential consisting of (i) a fast and short (30-sec) depolarization of 15±1 mV from a resting value of –52±1 mV and an increase of the fractional resistance of the apical membrane (first phase), (ii) a repolarization of 22±1 mV leading to a hyperpolarization of the cell (second phase), (iii) a depolarization of 11±1 mV and a decrease of the fractional resistance of the apical membrane (the third phase), (iv) and sometimes, a hyperpolarization of 6±1 mV and an increase of the fractional resistance of the apical membrane (fourth phase). The transepithelial potential increased with a peak value of 2.4±0.3 mV (basolateral side positive). The transepithelial PD started to increase (serosa positive), coinciding with the start of the second phase of the intracellular potential change, and continued to increase during the third phase. Ion replacements and electrical circuit analyses indicate that the first phase is caused by increase of the Cl conductance in the apical and basolateral membrane, the second phase by increased K+ conductance of the basolateral membrane, and the third phase and the fourth phase by increase and decrease, respectively, of an apical Cl conductance. The first and second phase of the carbachol effect could be elicited also by ionomycin. They were strongly reduced by EGTA. Phorbol dibutyrate (PDB) induced a sustained depolarization of the cell and a decrease of the apical fractional resistance. The results suggest that two different types of Cl channels are involved in the carbachol response: one Ca2+ dependent and a second which may be PKC sensitive.In the presence of a supramaximal concentration of forskolin, carbachol evoked a further increase of the apical Cl conductance.It is concluded that the short-lasting carbachol/Ca2+-dependent Cl conductance is different from the forskolin-activated conductance. The increase of the Cl conductance in the presence of forskolin by carbachol may be due to activation of different Cl channels or to modulation of the PKA-activated Cl channels by activated PKC.The authors are grateful to Drs. Laboisse and Augeron for providing the cell clone, and we thank Prof. Dr. F.H. Lopes da Silva for his comments. This work was supported by a grant from the Dutch Organization for Scientific Research, NWO.  相似文献   

15.
Summary Experiments were performed to determine the presence of a Cl–OH exchange (Cl–H+ cotransport) in the brush-border membranes isolated from the intestinal epithelium of freshwater trout. Determinations of alkaline phosphatase activities have shown that vesicle suspensions had an enrichment factor of about 17 in this enzyme indicating a high degree of purification of the brush-border membrane preparation. Cl uptake by vesicles in the presence of a proton gradient occurs against a concentration gradient with an overshoot ratio of about 2 and is inhibited by SITS. Several lines of evidence suggest that the mechanism involved is electrical in nature: (i) Cl uptake is increased when the proton gradient is increased, but there is a linear relationship between the Cl uptake and the Nernst potential of protons. (ii) Cl uptake is increased when a proton ionophore is added at low concentration and inhibited at high concentration, suggesting that a proton conductance is involved in the Cl uptake. (iii) there is a linear relationship between the initial speed of the uptake of increasing Cl concentrations and the Cl concentration. (iv) Cl uptake can be modulated by different potassium gradients with or without valinomycin. It is concluded that the enterocyte of the freshwater trout is not equipped with a Cl–OH exchange and the Cl uptake by vesicles is realized by a Cl conductance.  相似文献   

16.
The human bronchial cell line16HBE14o– was used as a model of airway epithelial cells to study the Ca2+-dependent Cl secretion and the identity of KCa channels involved in the generation of a favorable driving force for Cl exit. After ionomycin application, a calcium-activated short-circuit current (I sc) developed, presenting a transient peak followed by a plateau phase. Both phases were inhibited to different degrees by NFA, glybenclamide and NPPB but DIDS was only effective on the peak phase. 86Rb effluxes through both apical and basolateral membranes were stimulated by calcium, blocked by charybdotoxin, clotrimazole and TPA. 1-EBIO, a SK-channel opener, stimulated 86Rb effluxes. Block of basolateral KCa channels resulted in I sc inhibition but, while reduced, I sc was still observed if mucosal Cl was lowered. Among SK family members, only SK4 and SK1 mRNAs were detected by RT-PCR. KCNQ1 mRNAs were also identified, but involvement of KcAMP channels in Cl secretion was unlikely, since cAMP application had no effect on 86Rb effluxes. Moreover, chromanol 293B or clofilium, specific inhibitors of KCNQ1 channels, had no effect on cAMP-dependent I sc. In conclusion, two distinct components of Cl secretion were identified by a pharmacological approach after a Ca i 2+ rise. KCa channels presenting the pharmacology of SK4 channels are present on both apical and basolateral membranes, but it is the basolateral SK4-like channels that play a major role in calcium-dependent chloride secretion in 16HBE14o– cells.  相似文献   

17.
Summary Cl channels from basolaterally-enriched rabbit outer renal medullary membranes are activated either by increases in intracellular Cl activity or by intracellular protein kinase A (PKA). Phosphorylation by PKA, however, is not obligatory for channel activity since channels can be activated by intracellular Cl in the absence of PKA. The PKA requirement for activation of Cl channels in certain secretory epithelia is, in contrast, obligatory. In the present studies, we examined the effects of PKA and intracellular Cl concentrations on the properties of Cl channels obtained either from basolaterally-enriched vesicles derived from highly purified suspensions of mouse medullary thick ascending limb (mTALH) segments, or from apical membrane vesicles obtained from two secretory epithelia, bovine trachea and rabbit small intestine. Our results indicate that the Cl channels from mTALH suspensions were virtually identical to those previously described from rabbit outer renal medulla. In particular, an increase in intracellular (trans) Cl concentration from 2 to 50 mm increased both channel activity (P o) and channel conductance (g Cl, pS). Likewise, trans PKA increased mTALH Cl channel activity by increasing the activity of individual channels when the trans solutions were 2 mm Cl. Under the latter circumstance, PKA did not activate quiescent channels, nor did it affect g Cl. Moreover, when mTALH Cl channels were inactivated by reducing cis Cl concentrations to 50 mm, cis PKA addition did not affect P o. These results are consistent with the view that these Cl channels originated from basolateral membranes of the mTALH.Cl channels from apical vesicles from trachea and small intestine were completely insensitive to alterations in trans Cl concentrations and demonstrated markedly different responses to PKA. In the absence of PKA, tracheal Cl channels inactivated spontaneously after a mean time of 8 min; addition of PKA to trans solutions reactivated these channels. The intestinal Cl channels did not inactivate with time. Trans PKA addition activated new channels with no effect on basal channel activity. Thus the regulation of Cl channel activity by both intracellular Cl and by PKA differ in basolateral mTALH Cl channels compared to apical Cl channels from either the tracheal or small intestine.We acknowledge the able technical assistance of Steven D. Chasteen. Clementine M. Whitman provided her customary excellent secretarial assistance. This work was supported by Veterans Administration Merit Review Grants to T.E. Andreoli and to W.B. Reeves. C.J. Winters is a Veterans Administration Associate Investigator.  相似文献   

18.
Summary The present studies examined some of the properties of Cl channels in renal outer medullary membrane vesicles incorporated into planar lipid bilayers. The predominant channel was anion selective having aP Cl/P K ratio of 10 and a unit conductance of 93 pS in symmetric 320mm KCl. In asymmetric KCl solutions, theI-V relations conformed to the Goldman-Hodgkin-Katz equation. Channel activity was voltage-dependent with a gating charge of unity. This voltage dependence of channel activity may account, at least in part, for the striking voltage dependence of the basolateral membrane Cl conductance of isolated medullary thick ascending limb segments. The Cl channels incorporated into the planar bilayers were asymmetrical: thetrans surface was sensitive to changes in ionized Ca2+ concentrations and insensitive to reducing KCl concentrations to 10mm, while thecis side was insensitive to changes in ionized Ca2+ concentrations, but was inactivated by reducing KCl concentrations to 50mm.  相似文献   

19.
To better understand the process of fluid movement driven by Cl conductance, a Cl channel-forming peptide was delivered to the luminal membrane of microperfused rabbit renal proximal tubules. When the peptide (NK4-M2GlyR) was perfused, a significant new conductance was observed within 3 min and stabilized at 10 min. Alteration of the ion composition revealed it to be a Cl-specific conductance. Reabsorption of Cl (J Cl) was increased by NK4-M2GlyR, but not by a scramble NK4-M2GlyR sequence, suggesting that the active peptide formed de novo Cl channels in the luminal membrane of the perfused tubules. In the presence of the peptide, reabsorption of fluid (J v) was dramatically increased and J Na and J Ca were concomitantly increased. We propose that introduction of the new Cl conductance in the luminal membrane leads to a coordinated efflux of water across the membrane and an increase in cation translocation via the paracellular pathway, resulting in an increase in J v. This novel method could prove useful in characterizing mechanisms of fluid transport driven by Cl gradients.  相似文献   

20.
Summary The effects of complete substitution of gluconate for mucosal and/or serosal medium Cl on transepithelial Na+ transport have been studied using toad urinary bladder. With mucosal gluconate, transepithelial potential difference (V T) decreased rapidly, transepithelial resistance (R T) increased, and calculated short-circuit current (I sc) decreased. CalculatedE Na was unaffected, indicating that the inhibition of Na+ transport was a consequence of a decreased apical membrane Na+ conductance. This conclusion was supported by the finding that a higher amiloride concentration was required to inhibit the residual transport. With serosal gluconateV T decreased,R T increased andI sc fell to a new steady-state value following an initial and variable transient increase in transport. Epithelial cells were shrunken markedly as judged histologically. CalculatedE Na fell substantially (from 130 to 68 mV on average). Ba2+ (3mm) reduced calculatedE Na in Cl Ringer's but not in gluconate Ringer's. With replacement of serosal Cl by acetate, transepithelial transport was stimulated, the decrease in cellular volume was prevented andE Na did not fall. Replacement of serosal isosmotic Cl medium by a hypo-osmotic gluconate medium (one-half normal) also prevented cell shrinkage and did not result in inhibition of Na+ transport. Thus the inhibition of Na+ transport can be correlated with changes in cell volume rather than with the change in Cl per se. Nystatin virtually abolished the resistance of the apical plasma membrane as judged by measurement of tissue capacitance. With K+ gluconate mucosa, Na+ gluconate serosa, calculated basolateral membrane resistance was much greater, estimated basolateral emf was much lower, and the Na+/K+ basolateral permeability ratio was much higher than with acetate media. It is concluded the decrease in cellular volume associated with substitution of serosal gluconate for Cl results in a loss of highly specific Ba2+-sensitive K+ conductance channels from the basolateral plasma membrane. It is possible that the number of Na+ pump sites in this membrane is also decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号