首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Body size is an integral functional trait that underlies pollination‐related ecological processes, yet it is often impractical to measure directly. Allometric scaling laws have been used to overcome this problem. However, most existing models rely upon small sample sizes, geographically restricted sampling and have limited applicability for non‐bee taxa. Allometric models that consider biogeography, phylogenetic relatedness, and intraspecific variation are urgently required to ensure greater accuracy. We measured body size as dry weight and intertegular distance (ITD) of 391 bee species (4,035 specimens) and 103 hoverfly species (399 specimens) across four biogeographic regions: Australia, Europe, North America, and South America. We updated existing models within a Bayesian mixed‐model framework to test the power of ITD to predict interspecific variation in pollinator dry weight in interaction with different co‐variates: phylogeny or taxonomy, sexual dimorphism, and biogeographic region. In addition, we used ordinary least squares regression to assess intraspecific dry weight ~ ITD relationships for ten bees and five hoverfly species. Including co‐variates led to more robust interspecific body size predictions for both bees and hoverflies relative to models with the ITD alone. In contrast, at the intraspecific level, our results demonstrate that the ITD is an inconsistent predictor of body size for bees and hoverflies. The use of allometric scaling laws to estimate body size is more suitable for interspecific comparative analyses than assessing intraspecific variation. Collectively, these models form the basis of the dynamic R package, “pollimetry,” which provides a comprehensive resource for allometric pollination research worldwide.  相似文献   

2.
Phylogenetic comparative methods have become a standard statistical approach for analysing interspecific data, under the assumption that traits of species are more similar than expected by chance (i.e. phylogenetic signal is present). Here I test for phylogenetic signal in intraspecific body size datasets to evaluate whether intraspecific datasets may require phylogenetic analysis. I also compare amounts of phylogenetic signal in intraspecific and interspecific body size datasets. Some intraspecific body size datasets contain significant phylogenetic signal. Detection of significant phylogenetic signal was dependant upon the number of populations (n) and the amount of phylogenetic signal (K) for a given dataset. Amounts of phylogenetic signal do not differ between intraspecific and interspecific datasets. Further, relationships between significance of phylogenetic signal and sample size and amount of phylogenetic signal are similar for intraspecific and interspecific datasets. Thus, intraspecific body size datasets are similar to interspecific body size datasets with respect to phylogenetic signal. Whether these results are general for all characters requires further study.  相似文献   

3.
Body size of many animals varies with latitude: body size is either larger at higher latitudes (Bergmann's rule) or smaller at higher latitudes (converse Bergmann's rule). However, the causes underlying these patterns are poorly understood. Also, studies rarely explore how sexual size dimorphism varies with latitude. Here we investigate geographic variation in body size and sexual size dimorphism of the seed-feeding beetle Stator limbatus, collected from 95 locations along a 38 degrees range in latitude. We examine 14 variables to test whether clines in environmental factors are adequate to explain geographic patterns of body size. We found that body size and sexual size dimorphism of S. limbatus varied considerably with latitude; beetles were smaller but more dimorphic at lower latitudes. Body size was not correlated with a gradient in mean temperature, contrary to the commonly accepted hypothesis that clines are produced by latitudinal gradients in temperature. Instead, we found that three factors were adequate to explain the cline in body size: clinal variation in host plant seed size, moisture (humidity), and seasonality (variance in humidity, precipitation, and temperature). We also found that the cline in sexual size dimorphism was partially explainable by a gradient in moisture, though moisture alone was not sufficient to explain the cline. Other ecological or environmental variables must necessarily contribute to differences in selection on male versus female body size. The main implications of our study are that the sexes differ in the magnitude of clinal variation in body size, creating latitudinal variation in sexual size dimorphism, and that clines in body size of seed beetles are likely influenced by variation in host seed size, water availability, and seasonality.  相似文献   

4.
The magnitude and direction of sexual size dimorphism (SSD) may vary considerably within and among taxa, and the primary causes of such variation have not been thoroughly elucidated. For example, the effect of abiotic factors is frequently attributed to explain intra‐ and interspecific variation in SSD. Rensch's rule, which states that males vary more in size than females when body size increases, has rarely been tested in bats. Therefore, whether bats follow Rensch's rule remains unclear, particularly when females are larger than males. We investigated whether four bat species presented SSD, as well as whether their body sizes varied within each sex across localities, testing the hypothesis that intraspecific SSD varies substantially depending of sampling localities. We finally examined whether bats followed Rensch's rule by simultaneously using intraspecific and interspecific approaches. Although SSD was not observed for most bat species within each locality, the females of three of the four captured species exhibited differences in body size between particular localities. Usually the females varied more in size than did males across localities, mostly exhibiting a female‐biased SSD. Significant differences in SSD were observed (i.e. mean values of the sexual dimorphism index), even though Rensch's rule was not followed.  相似文献   

5.
Aim The aim of this study is to test whether Bergmann's rule, a general intraspecific tendency towards larger body size in cooler areas and at higher latitudes, holds for birds throughout the world. Location This study includes information on species of birds from throughout the world. Methods I gathered data on body size variation from the literature and used two general meta‐analytical procedures to test the validity of Bergmann's rule in birds: a modified vote‐counting approach and calculation of overall effect sizes. Related species may show similar body size trends, thus I performed all analyses using nonphylogenetic and phylogenetic methods. I used tests of phylogenetic signal for each data set to decide which type of statistical analysis (nonphylogenetic or phylogenetic) was more appropriate. Results The majority of species of birds (76 of 100 species) are larger at higher latitudes, and in cooler areas (20 of 22 species). Birds show a grand mean correlation coefficient of +0.32 for body size and latitude, and ?0.81 for body size and temperature, both significant trends. Sedentary species show stronger body size trends in some, but not all, analyses. Neither males nor females consistently have stronger body size trends. Additionally, the strength of body size trends does not vary with latitude or body mass. Conclusions Bergmann's rule holds for birds throughout the world, regardless of whether temperature or latitude (as a proxy) is used. Previous studies have suggested that Bergmann's rule is stronger for sedentary than migratory species, males than females and temperate than tropical taxa. I did not find strong support for any of these as general themes for birds, although few studies of tropical taxa have been conducted. The processes responsible for Bergmann's rule remain somewhat of a black box; however, fasting endurance is probably a more important factor than the traditional hypothesis of heat conservation.  相似文献   

6.
Robert N. Reed 《Ecography》2003,26(1):107-117
Many higher taxa exhibit latitudinal gradients in species richness, geographic range size, and body size. However, these variables are often interdependent, such that examinations of univariate or bivariate patterns alone may be misleading. Therefore, I examined latitudinal gradients in, and relationships between, species richness, geographic range size, and body size among 144 species of New World venomous snakes [families Elapidae (coral snakes) and Viperidae (pitvipers)]. Both lineages are monophyletic, collectively span 99° of latitude, and are extremely variable in body size and geographic range sizes. Coral snakes exhibit highest species richness near the equator, while pitviper species richness peaks in Central America. Species – range size distributions were strongly right-skewed for both families. There was little support for Bergmann's rule or Rapoport's rule for snakes of either family, as neither body size nor range size increased significantly with latitude. However, range area and median range latitude were positively correlated above 15° N, indicating a possible "Rapoport effect" at high northern latitudes. Geographic range size was positively associated with body size. Available continental area strongly influenced range size. Comparative (phylogenetically-based) analyses revealed that shared history is a poor predictor of range size variation within clades. Among vipers, trends in geographic range sizes may have been structured more by historical biogeography than by macroecological biotic factors.  相似文献   

7.
In order to identify key factors in the evolution of life history traits in Ascothoracida and Rhizocephala (two groups of crustacean parastes of invertebrates), comparative analyses were performed using phylogenetically independent contrasts. Among 59 ascothoracidan species, latitude correlated positively with body size, whereas there was no relationship between water depth and body size. Body size also correlated strongly with egg size; however, once corrected for body size, egg size was not related to either latitude or water depth. Among 91 rhizocephalan species, neither latitude nor water depth correlated with body size. However, host species of larger sizes harboured larger species of rhizocephalan parasites. Egg size of rhizocephalans did not correlate with body size, and was not influenced by either latitude or water depth. The patterns observed in this study show both differences from an similarities to those reported for other groups of crustacean parasites, and suggest that adaptations to similar selective pressures are not always identical among distantly-related taxa.  相似文献   

8.
One of the most widely recognized generalizations in biology is Bergmann's rule, the observation that, within species of birds and mammals, body size tends to be inversely related to ambient temperature. Recent studies indicate that turtles and salamanders also tend to follow Bergmann's rule, which hints that this species-level tendency originated early in tetrapod history. Furthermore, exceptions to Bergmann's rule are concentrated within squamate reptiles (lizards and snakes), suggesting that the tendency to express a Bergmann's rule cline may be heritable at the species level. We evaluated species-level heritability and early origination of Bergmann's rule by mapping size-latitude relationships for 352 species onto a tetrapod phylogeny. When the largest available dataset is used, Bergmann's rule shows significant phylogenetic signal, indicating species-level heritability. This represents one of the few demonstrations of heritability for an emergent species-level property and the first for an ecogeographic rule. When species are discretely coded as showing either Bergmann's rule or its converse, parsimony reconstructions suggest that: (1) the tendency to follow Bergmann's rule is ancestral for tetrapods, and (2) most extant species that express the rule have retained this tendency from that ancient ancestor. The first inference also generally holds when the discrete data or size-latitude correlation coefficients are analyzed using maximum likelihood, although the results are only statistically significant for some versions of the discrete analyses. The best estimates of ancestral states suggest that the traditional adaptive explanation for Bergmann's rule-conservation of metabolic heat-was not involved in the origin of the trait since that origin predates the evolution of endothermy. A more general thermoregulatory hypothesis could apply to endotherms and some ectotherms, but fails to explain why salamanders have retained Bergmann's rule. Thus, if thermoregulation underlies the origin of a Bergmann's rule tendency, this trait may have been continuously maintained while its cause changed. Alternatively, thermoregulation may not underlie Bergmann's rule in any tetrapod group. The results also suggest that many extinct groups not included in our analyses followed Bergmann's rule.  相似文献   

9.
Two major intraspecific patterns of adult size variation are plastic temperature‐size (T‐S) responses and latitude‐size (L‐S) clines. Yet, the degree to which these co‐vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison of these gradients to date, and find that their direction and magnitude co‐vary among 12 arthropod orders (r2 = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T‐S and L‐S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial arthropods, size increases on average in univoltine species, consistent with predictions from size vs. season‐length trade‐offs.  相似文献   

10.
Latitudinal shifts in body size of Enallagma cyathigerum (Odonata)   总被引:1,自引:0,他引:1  
Aim Survey of the latitudinal body size pattern for populations of Enallagma cyathigerum (Odonata) across a south‐north transect. Location A transect covering the whole distribution range from south to north across Europe was sampled. Methods Newly emerged adults were collected from five major sites across Europe and one to four localities were sampled within each site. In total 253 adults were collected from fourteen localities. Body size was measured using thorax length, length of right front wing and length of right hind tibia. These body size estimates were thereafter related to latitude and mean temperature in January and July. Results Body size showed a U‐shaped pattern with latitude, being large at low and high latitudes and small at intermediate latitudes. The same U‐shaped pattern was found for mean January and July temperature, with large animals at low and high temperatures. Conclusion The U‐shaped relationship between body size and latitude is suggested to be a combination of two effects: (1) the length of the season favourable for growth and development, and (2) variation in life cycle length with latitude.  相似文献   

11.
1. Ecogeographical rules refer to recurring patterns in nature, including the latitudinal diversity gradient (LDG), Rapoport's rule and Bergmann's rule, amongst others. In the present study, the existence of these rules was examined for diving beetles (Coleoptera: Dytiscidae), a family of aquatic predatory beetles. 2. Assemblage‐level data were analysed for diving beetles, focusing on species richness, local contribution to beta diversity (LCBD), mean range size and mean body size across the biogeographical provinces of Northern Europe. First, each of these variables was correlated with latitude, and then variation in each variable was modelled using actual environmental variables in boosted regression tree analysis. 3. Species richness was found to decrease with latitude, LCBD increased with latitude, mean range size did not show a significant relationship with latitude, and mean body size decreased with latitude. The latter finding was in contrast to Bergmann's rule. The actual environmental variables best predicting variation in these four response variables varied among the models, although they generally included temperature‐related and land use variables as the most influential ones. 4. The results obtained in the present study suggest that diving beetles conformed to the LDG, did not follow Rapoport's rule, and showed a reversed latitudinal gradient in the context of Bergmann's rule. In addition, species‐poor provinces harboured ecologically most unique faunas, suggesting that species richness and LCBD are complementary measures of biodiversity. 5. Even though general support was not found for most of the ecogeographical rules examined, the findings of the present study are interesting because they suggest that aquatic ectothermic invertebrates may show patterns different from those originally described for terrestrial endothermic vertebrates.  相似文献   

12.
According to Bergmann's rule, individuals of a given species tend to be larger in colder (northern) climates. Traditional explanation points to the relatively lower surface‐to‐volume ratio in larger animals and, consequently, relatively lower costs of thermoregulation. We examined intraspecific covariation of body size with geographical location and climate in five species of Sorex shrews, animals that are among the smallest extant mammals. The condylobasal length of skull (CBL), compiled from literature data and measured on museum specimens, was used as an indicator of the overall body size of shrews. Surprisingly, in three out of five shrew species, the CBL was negatively correlated with latitude, and the same trend, although not statistically significant, was found in the fourth species. In general, shrews were smaller in colder areas, as evidenced by the positive correlations between the CBL and temperature. In two species, these positive correlations appeared when the effect of longitude was held constant in the partial correlation analysis. Characteristically, the strongest negative correlation with latitude and positive with temperatures was found in S. minutus, the smallest species under study. Shrews were in general larger in environments with high actual evapotranspiration. Body mass reviewed in S. araneus paralleled the pattern found in the CBL variation in this species, i.e. it decreased northward, both in summer‐ and winter‐caught animals. In addition, contrary to the widely accepted ? but not rigorously tested ? belief, body mass recession from summer to winter (the Dehnel Effect) did not correlate with latitude. We concluded that shrews followed the converse to Bergmann's rule, and hypothesize that part of their body size variation along the west‐east axis may be explained by character displacement. We also hypothesize that scarcity of food, especially in winter, is a major factor selecting for small body size in shrews in northern areas, as smaller individuals should require less food. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78 , 365–381.  相似文献   

13.
Aim The patterns and causes of ecogeographical body size variation in ectotherms remain controversial. In amphibians, recent genetic studies are leading to the discovery of many cryptic species. We analysed the relationships between body size and climate for a salamander (Salamandrina) that was recently separated into two sibling species, to evaluate how ignoring interspecific and intraspecific genetic structure may affect the conclusions of ecogeographical studies. We also considered the potential effects of factors acting at a local scale. Location Thirty‐four populations covering the whole range of Salamandrina, which is endemic to peninsular Italy. Methods We pooled original data and data from the literature to obtain information on the snout–vent length (SVL) of 3850 Salamandrina females; we obtained high‐resolution climatic data from the sampled localities. We used an information‐theoretic approach to evaluate the roles of climate, genetic features (mitochondrial haplogroup identity) and characteristics of aquatic oviposition sites. We repeated our analyses three times: in the first analysis we ignored genetic data on intraspecific and interspecific variation; in the second one we considered the recently discovered differences between the two sibling species; in the third one we included information on intraspecific genetic structure within Salamandrina perspicillata (for Salamandrina terdigitata the sample size was too small to perform intraspecific analyses). Results If genetic information was ignored, our analysis suggested the existence of a relationship between SVL and climatic variables, with populations of large body size in areas with high precipitation and high thermal range. If species identity was included in the analysis, the role of climatic features was much weaker. When intraspecific genetic differences were also considered, no climatic feature had an effect. In all analyses, local factors were important and explained a large proportion of the variation; populations spawning in still water had a larger body size. Main conclusions An imperfect knowledge of species boundaries, or overlooking the intraspecific genetic variation can strongly affect the results of analyses of body size variation. Furthermore, local factors can be more important than the large‐scale parameters traditionally considered, particularly in species with a small range.  相似文献   

14.
Within ectotherms, increases in body size with latitude are thought to be the consequence of the effect of a decline in development temperature, which results in a larger final body size. In contrast, latitudinal declines in body size are usually ascribed to limited resources. It has been suggested that if generation time is similar to or constitutes a significant proportion of the growing season length, then season length is likely to have a considerable influence on body size because of constraints on resource availability, so resulting in a decline in body size with temperature (latitude). However, if generation time declines relative to season length, resources effectively become available for longer. Temperature influences on growth and differentiation are likely to be most significant, resulting in an increase in body size with latitude. Here, we test the hypothesis by comparing intraspecific altitudinal body size clines in a monophyletic group of weevils from two regions that differ substantially in seasonality. On the relatively aseasonal Marion Island, body size increases with altitude, whereas on the more seasonal Heard Island the opposite is found. In addition, overlapping generations on Marion Island indicate year-round resource availability, whereas more discrete generations on Heard Island indicate winter cessation of growth and development. Our data provide support for the hypothesis that the seasonality of resource availability has a major influence on body size clines. Furthermore, we argue that analysis of interspecific body size clines should be preceded by nested analyses of variance to determine the influence of clinal replacement of higher taxa on these patterns.  相似文献   

15.
Microhabitat characteristics are expected to influence the distribution of stream fish species at fine spatial scales (e.g., within riffle segments). Body size is probably the most important trait that constrains microhabitat occupation by fish, but the effect of intraspecific variation has been understudied. We investigated how physical microhabitat characteristics affect species and body size distribution of fish within a stream riffle segment in a coastal subtropical drainage of Brazil. Fishes were sampled by electrofishing 56 riffle plots along a 730-m long stream segment. Species composition was significantly related to four microhabitat characteristics: substrate size, flow velocity, distance to margin and depth. In addition, mean body size increased with increasing substrate size and depth of microhabitat sampling plots. However, when including species identity in linear mixed-effects models (LMM), we observed a different relationship between body size and microhabitat characteristics, but most of the variation was explained by species identity. Thus, we fitted LMMs separately for each species and found species-specific relations between intraspecific variation in body size and microhabitat characteristics. The low variation explained in the models suggests that other fine scale factors, such as biotic interactions and dispersal from adjacent habitat patches, should be incorporated in modeling microhabitat use by stream fish. Our findings suggest that body size is important by itself, but intraspecific variation in body size also constrains microhabitat use differently for each species, which may depend on other species-specific traits, such as morphology, behavior and life history.  相似文献   

16.
We studied the intra- and interspecific size variability of 271 water shrewsNeomys fodiens (Pennant, 1771) andN. anomalus Cabrera, 1907 from seven sample sites along a latitudinal transect from Bosnia and Herzegovina to Poland.Neomys anomalus was the only water shrew in three Dinaride karst fields, while it was sympatric with N.fodiens in remaining sites. The first principal component scores (PC1; 72.2% of variance explained), derived from principal components analysis of 13 cranial, mandibular and dental measurements, were used as the size factor. One-way ANOVA detected significant interpopulation variation in both species; intraspecific variation, however, was much more pronounced inN. anomalus. No latitudinal size pattern was found in N. fodiens (r = −0.42, p = 0.58), while mean PC1 scores correlated significantly and negatively with latitude inN. anomalus (r = −0.92, p = 0.004). Therefore, along a north to south transect,N. anomalus converged in size towards N. fodiens, which suggests that the former species occupies increasingly more aquatic habitats in the same direction. Individuals from allopatric populations ofN. anomalus from Slovenia and Bosnia and Herzegovina were, on average, larger than sympatric conspecific populations from the same latitudinal zone, which is consistent with the hypothesis of character displacement.  相似文献   

17.
Aim  We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location  The Sunda Shelf islands of Southeast Asia.
Methods  Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results  We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions  The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule.  相似文献   

18.
Graham H. Pyke 《Oecologia》1978,34(3):255-266
Summary It is hypothesized that the body size of a bumblebee will be that size which maximizes its average net rate of energy intake while collecting nectar. A mathematical model is developed with the result that the net rate of energy intake of a nectar-collecting bumblebee is expressed as a function of the body size of the bumblebee. From this model the body size which maximizes the net rate of energy intake (i.e., optimal body size) is found (as the solution of an implicit equation). In this situation the advantage of large size is that larger bumblebees fly faster and hence take less flight time than smaller bumblebees. The disadvantage of larger size is greater energetic costs.The parameters of the model are estimated using data obtained from the foraging behavior of bumblebees on monkshood (Aconitum columbianum). The optimal body size is then calculated for workers of Bombus appositus which obtained almost all their nectar from monkshood. The observed and expected (i.e., optimal) body size are found to be close and not significantly different.The model also predicts that, from the bumblebee's point of view, there should be a positive correlation between the size of the bumblebee and the average amount of nectar obtained per flower. Evidence of this correlation is presented and the possible significance of the correlation from the plant's point of view is discussed. A possible extension of the model to general relationships between predator body size, prey size and prey density is discussed.  相似文献   

19.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

20.
Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,"Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号