首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tiller characteristics (length and age of laminae, numberof leaves per tiller) which depend on morphogenetic characterssuch as leaf appearance and expansion rates, leaf growth durationand leaf lifespan were studied in the field over four growingseasons to gain a better understanding of the progressive changesin leaf digestibility over time, and to facilitate the developmentof predictive mathematical models. We show that, for a givenregrowth, only the number of leaves per tiller and the laminaexpansion rate remain constant throughout growth. In other words,the length of successive laminae, their growth duration andlifespan increased while their rate of appearance decreasedin such a way that the lamina expansion rate at the tiller levelremained constant. These changes were associated with an increasein sheath length which governs both the lamina appearance rateand its growth duration. As temperature increased, the averagelamina expansion rate and the number of laminae which grew bothincreased simultaneously. Therefore, high temperature acceleratesthe changes in tiller characteristics which occur as growthprogresses. Copyright 2000 Annals of Botany Company Leaf, senescence, phyllochron, lifespan, digestibility, temperature, cocksfoot, Dactylis glomerata L  相似文献   

2.
Experiments were made to determine the extent of reciprocaltransfer of products (derived from the assimilation of 14CO2)between various parts of the young vegetative grass plant (Loliummultiflorum Lam.). When individual laminae on different tillerswere supplied with 14CO2, 47–64 per cent of the fixedcarbon was exported after 24 h. The principal sinks were theroot system and the shoot or tiller to which the fed leaf wasattached. Other tillers also received significant quantitiesof radiocarbon. When whole tillers were supplied with 14CO2the percentage of fixed radiocarbon exported within 24 h rangedfrom 14–31 per cent. Of this, 50–74 per cent wasrecovered from the root system (except in the case of exportfrom the youngest tiller) but exchange of material between tillersalso occurred.A reciprocity diagram is presented and it is concludedthat despite the magnitude of the exchange no tiller showedan over-all net gain or loss. The main shoot and the tillersdiffered in the extent of their carbon exchange and in theirdegree of independence. The oldest daughter tiller of the mainshoot was the most independent and the main shoot most interdependent.  相似文献   

3.
Photosynthesis of Lamina and Sheath of Barley Leaves   总被引:1,自引:0,他引:1  
Apparent photosynthesis, in mg. CO2 absorbed per dm.2 per hour,of the sheath and enclosed stem of a barley leaf was about 50per cent. of that of the lamina of the same leaf, when the photosynthesizingarea was measured as one side of the lamina and the outer exposedsurface of the sheath. Apparent photosynthesis of a particularlamina or sheath was about 70 per cent. of that of the one aboveon the same stem. Respiration per dm.2, though not per g. dry weight, of sheathwith enclosed stem was greater than of lamina in one experimentdone with low-intensity illumination so that true rates of photosynthesisof lamina and sheath were similar. Differences in respirationrates per unit area of laminae and sheaths probably accountedfor most of the greater apparent photosynthesis of the formerin other experiments done with higher intensity illumination. It is suggested that for growth-analysis studies the size ofthe photosynthetic system of cereals should be measured as thatof one side of the leaf laminae plus the outer surface of thecombined leaf sheaths. In the later stages of growth the surfacearea of exposed stem and peduncle should also be included.  相似文献   

4.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

5.
Mature second leaves of Lolium perenne L. cv. Vigor, were sampledin a spring and summer regrowth period. Effects of CO2enrichmentand increased air temperature on stomatal density, stomatalindex, guard cell length, epidermal cell density, epidermalcell length and mesophyll cell area were examined for differentpositions on the leaf and seasons of growth. Leaf stomatal density was smaller in spring but greater in summerin elevated CO2and higher in both seasons in elevated temperatureand in elevated CO2xtemperature relative to the respective controls.In spring, leaf stomatal index was reduced in elevated CO2butin summer it varied with position on the leaf. In elevated temperature,stomatal index in both seasons was lower at the tip/middle ofthe leaf but slightly higher at the base. In elevated CO2xtemperature,stomatal index varied with position on the leaf and betweenseasons. Leaf epidermal cell density was higher in all treatmentsrelative to controls except in elevated CO2(spring) and elevatedCO2xtemperature (summer), it was reduced at the leaf base. Inall treatments, stomatal density and epidermal cell densitydeclined from leaf tip to base, whilst guard cell length showedan inverse relationship, increasing towards the base. Leaf epidermalcell length and mesophyll cell area increased in elevated CO2inspring and decreased in summer. In elevated CO2xtemperatureleaf epidermal cell length remained unaltered in spring comparedto the control but decreased in summer. Stomatal conductancewas lower in all treatments except in summer in elevated CO2itwas higher than in the ambient CO2. These contrasting responses in anatomy to elevated CO2and temperatureprovide information that might account for differences in seasonalleaf area development observed in L. perenne under the sameconditions. Lolium perenne ; perennial ryegrass; elevated CO2and temperature; stomatal density; stomatal index; cell size  相似文献   

6.
THOMAS  H. 《Annals of botany》1983,51(3):363-371
Lolium temulentum seedlings were grown on a nutrient mediumcontaining NH4NO2 at 0, 0·1, 0·5, 1·0 and4·3 mmoll–1 as the sole N source. Relative andabsolute extension rates, maximal leaf size, duration of extensiongrowth, rate of leaf appearance and plastochron index were determinedfrom the parameters of Richards functions fitted to lengthsof laminae measured at intervals after sowing. The final lengthof leaf I was relatively insensitive to N whereas mean relativeextension rate was increased and duration of growth decreasedwith increasing NH4NO2 concentration. Leaves 2 and 3 enlargedprogressively with N at concentrations up to 1·0 mmoll–1but were unresponsive thereafter. There was no significant correlationbetween final length and mean relative extension rate for leaves1 to 3. Leaves 4 to 6 continued to show increasing length beyond1·0 mmoll–1 N and final length was significantlycorrelated with mean relative extension rate. Increasing N increasedthe rate of leaf appearance by decreasing the duration of leafextension and plastochron. These results are discussed in relationto the control of leaf and N turnover. Lolium temulentum, rye grass, leaf extension, nitrogen, Richards function, growth analysis  相似文献   

7.
The distribution of 14C-assimilates was examined in reproductiveplants of Lolium multiflorum Lam. var. Westerwoldicum (cv. Tama)from which all emerged tillers had been removed, leaving themain tiller with two expanding leaves, one of them the flagleaf, and two expanded leaves. Export of 14C from the lowerexpanded leaf was mainly to the tiller in its axil, the steminternode below its node and the roots, whereas the upper expandedleaf supplied predominantly the expanding leaves, the ear, steminternodes, roots and the tiller bud in the axil of the lowerleaf. Defoliation and root-pruning showed that expanding leaveswere able to compete successfully for assimilates, probablythrough the production of substances capable of mobilizing supply.Local application of 1-naphthaleneacetic acid (NAA), gibberellicacid (GA3) and 6-benzylaminopurine (BAP) to small tiller budsshowed that GA3 and BAP promoted bud growth and 14C accumulation,but that addition of NAA reduced these effects.  相似文献   

8.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

9.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

10.
Changes in net photosynthesis, respiration, transpiration andcontents of total C, NO3-N and reduced N were followed throughoutthe life of leaf 6 of nitrate-dependent plants of castor beanexposed to moderate salinity stress (71 mol m–3 NaCl).Salt treatment was applied for measuring mineral flows in aparallel study (Jeschke and Pate, 1991b). Concurrent measurementswere made of solute composition and C: N molar ratios and concentrationsof reduced N and collected NO3-N in phloem sap bleeding fromshallow incisions in the top and at the base of petioles andin xylem exudates from flaps of proximal leaf midribs followingpressurization of the root system. The resulting data were usedto construct empirical models of the respective economies ofC, total N, NO3 and reduced N for a sequence of defined phasesof leaf life. Water use efficiency increased 3-fold from emergenceto a maximum of 1·5 mmol CO2 mol–1 H2O before decliningto 0·5 mmol CO2 mol–1 H2O at senescence. Xylemmolar ratios of C:N varied from 1·2–2·8,with nitrate always a smaller component than reduced N. Phloemsap C:N increased from 10–40 with leaf expansion and wasthen maintained in the range of 40–50 until falling steeplyto 20 at leaf senescence. Nitrate comprised less than 1% oftotal N in all phloem sap samples. The models of C uptake, flow,and utilization showed a major role of phloem import and thenincreasingly of laminar photosynthesis in providing C for leafgrowth. The carbon budget was thereafter characterized by ratesof phloem export closely matched to net rates of CO2 fixationby the lamina. Corresponding data for total N depicted an earlymajor role of both xylem and phloem import, but the eventualdominance of xylem import as the N source for leaf growth. Cyclingof N by xylem to phloem exchange commenced before the leaf hadachieved maximum N content, and was the major contributor tophloem export until leaf senescence when mobilized N providedmost exported N. The nitrate economy of the leaf was characterizedby early establishment of tissue pools of the ion in the petioleand to a lesser extent in the lamina, continued high rates ofnitrate reduction in the lamina but negligible assimilationin the petiole, and a release through xylem of previously accumulatedNO3 from petiole to lamina. Related data for reduced N illustratedthe much greater importance of this form of N than nitrate intransport, storage and cycling of N at all stages of leaf andpetiole life. Xylem to phloem interchanges of reduced N in petiolewere minimal in comparison with cycling through the lamina.The ratio of CO2 reduction to NO3 reduction in the lamina wasat first low (57 mol mol–1) increasing to a peak valueof 294 during mature leaf functioning before declining to 190during the presenescence phase of leaf development. This patternreflected age-related effects on water use efficiency, changesin NO3 levels in the xylem stream entering the lamina, and therelatively low photosynthetic performances of very young andsenescent laminae. Key words: Ricinus communis, leaf development, phloem transport, xylem transport, carbon, nitrogen, nitrate, reduced nitrogen, nitrate reduction, partitioning  相似文献   

11.
HUME  D.E. 《Annals of botany》1991,68(1):1-11
Effects of time of initial cut and subsequent cutting interval(1, 2 or 4 weeks) were examined in a glasshouse during summer1988 for reproductive plants of three prairie grass cultivars(Bromus willdenowii Kunth), Westerwolds ryegrass (Lolium multiflorumLam.) and perennial ryegrass (Lolium perenne L.). Measurementswere made of tiller and leaf numbers, sites of tillering, reproductivedevelopment, and herbage quality and yields. Effect of timeof initial cutting on regrowth appeared to be independent ofstage of reproductive development and unrelated to any of themeasured plant parameters. Characteristics for each cultivaras identified during undisturbed growth prior to the initialcuts, were modified by the subsequent cutting frequencies. Perennial ryegrass had the highest yields under frequent cuttingwith high herbage quality. Westenwolds ryegrass and the prairiegrass cultivars ‘Grasslands Matua’ and ‘Primabel’had the highest yields with infrequent cutting, but lower herbagequality than in perennial ryegrass. At each cut, tiller deathin prairie grass was determined by the number of reproductivetillers, and in the ryegrasses also by the numbers of elongatedvegetative tillers. Recovery of tiller numbers was rapid andprimarily from inhibited tiller buds at the base of reproductivetillers. In prairie grass, tiller numbers were relatively unaffectedby cutting frequency, but at frequent cutting, many axillarytillers originated from vegetative tillers rather than frominhibited tiller buds at the base of reproductive tillers. Prairie grass, Bromus willdenowii Kunth, Westerwolds ryegrass, Lolium multiflorum Lam., perennial ryegrass, Lolium perenne L., first (initial) cut, cutting frequency, regrowth, leaf appearance, tillering, yield, nitrogen, water-soluble carbohydrates, herbage quality  相似文献   

12.
The effects of different applied NO3 concentrations onextension growth and final length and area of leaves 1–4of five cereals and six pasture grasses of temperate originwere examined. Increased applied NO3 in the range 0.1–0.5.0mol m–3 caused decreased duration of growth but increasedgrowth rate and final length of leaves 2–4 of the cerealsAvena saliva, Hordeum vulgare, Secale cereale, x Triticosecaleand Triticum aestivum. For all cereals, increased NO3resulted in increased area of leaves 1–4. Pasture grasseswere supplied either 0.5 or 50 mol m–3 NO3. Increasedapplied NO3 (0.5–5.0 mol m–3) resulted indecreased duration of growth and increased growth rate and finalarea of leaves 1–4 of Bromus wiltdenowii, leaves 2–4ofFestuca arundinaceae and leaves 3 and 4 of Lolium muitiflorum.In addition, length of leaves 3 and 4 of B. witidenowii increasedwith increased NO3. Increased NO3 resulted inincreased area of leaves 2–4 of Dactylis gtomerata andLolium perenne and leaves 3 and 4 of Phalaris aquaiica but hadno effect on extension growth of all three species. Avena sativa L, oat, Hordeum vulgare L, barley, Secale cereale L, rye, x Triticosecale Wittm, triticale, Triticum aestivum L, wheat, Bromus willdenowii Kunth, prairie grass, Dactylis gtomerata L, cocksfoot, Festuca arundinaceae Shreb, tall fescue, Lolium multijlorum Lam, Italian ryegrass, Lolium perenne L, perennial ryegrass, Phalaris aquatica L, nitrate, leaf extension, leaf expansion  相似文献   

13.
The effects of increased atmospheric carbon dioxide (CO2) of700 µmol mol–1 and increased air temperature of+ 4C were examined in Lolium perenne L. cv. Vigor, growingin semi-controlled greenhouses. Leaf growth, segmental elongationrates (SER), water relations, cell wall (tensiometric) extensibility(%P) and epidermal cell lengths (ECL) were measured in expandingleaves in spring and summer. In elevated CO2, shoot dry weight (SDW) increased in mid-summer.In both seasons, SDW decreased in elevated air temperatureswith this reduction being greater in summer as compared to spring.Specific leaf area (SLA) decreased in elevated CO2 and in CO2 temperature in both seasons. In spring, increased leaf extensionand SER in elevated CO2 were linked with increased ECL, %P andfinal leaf size whilst in summer all were reduced. In high temperature,leaf extension, SER, %P and final leaf size were reduced inboth seasons. In elevated CO2 temperature, leaf extension,SER, %P, and ECL increased in spring, but final leaf size remainedunaltered, whilst in summer all decreased. Mid-morning waterpotential did not differ with CO2 or temperature treatments.Leaf turgor pressure increased in elevated CO2 in spring andremained similar to the control in summer whilst solute potentialdecreased in spring and increased in summer. Contrasting seasonalgrowth responses of L. perenne in response to elevated CO2 andtemperature suggests pasture management may change in the future.The grazing season may be prolonged, but whole season productivitymay become more variable than today. Key words: Lolium perenne, ryegrass, CO2 and temperature, leaf extension, cell wall rheology  相似文献   

14.
The carbon balance and changes in leaf structure in Clusia minorL., were investigated in controlled conditions with regardto nitrogen supply and responses to low and high photosyntheticallyactive radiation (PAR). Nitrogen deficiency and high PAR ledto the production of smaller leaves with higher specific leafdry weight (SLDW) and higher leaf water content, but with lowerchlorophyll content. Nitrogen and PAR levels at growth alsoaffected CO2 exchange and leaf area. In – N conditions,total daily net CO2 uptake and leaf area accumulation were slightlyless for high-PAR-grown plants. In contrast, high-PAR-grownplants supplied with nitrogen showed about a 4-fold higher totaldaily CO2 uptake and about twice the total leaf area of low-PAR-grownplants. Although total daily net CO2 uptake of +N plants wasonly slightly higher than –N plants under the low PARlevel, –N plants produced almost three times more leafarea but with lower SLDW. Under well-watered conditions, low-PAR-grownplants showed only CO2 evolution during the night and malicacid levels decreased. However, there was considerable night-timeaccumulation of titratable protons due to day/night changesin citric acid levels. High-PAR-grown plants showed net CO2uptake, malate and citrate accumulation during the dark period.However, most of the CO2 fixed at night probably came from respiratoryCO2. Positive night-time CO2 exchange was readily observed forlow-PAR-grown plants when they were transferred to high PARconditions or when they were submitted to water stress. In plantsgrown in high and low PAR, CAM leads to a substantial increasein daily water use efficiency for water-stressed plants, althoughtotal net CO2 uptake decreased.  相似文献   

15.
A possible morphogenic effect of leaf sheaths on subsequent leaf development was investigated by varying sheath tube (pseudostem) length in plants of perennial ryegrass (Lolium perenne) cv. Talbot by either incising longitudinally or excising the distal portion of the sheath tube, while leaving the basal length of the tube intact. The tube was maintained at predetermined lengths by incising and excising new growth daily. The youngest rapidly expanding leaf was allowed to grow through the tube and was measured when fully expanded. Reducing tube length by excision or by incision from 60 mm to just above the cowl leaf on the apex reduced lamina length by 87% and 77% respectively. Over all tube lengths, laminae in incised treatments were almost twice as long as those in excised treatments. Sheath length followed a similar pattern. The effect on developing leaves of artificially extending sheath tubes (previously excised to 15 mm) to 30 or 45 mm with foil was similar to that of initially excising sheath tubes to 30 or 45 mm. The shorter the sheath tube (reduced by incision) through which the leaves had to grow, the shorter the cells, especially in the laminae. The estimated cell number per row along the length of the laminae ranged from 190 in tillers (shoots) with a very short tube (just above the cowl leaf) to 454 in intact control tillers. It is concluded that the sheath tube has a morphogenic influence on the development of subsequent leaves due to the change in environment of the leaf lamina on appearance, affecting both cell elongation and cell division.  相似文献   

16.
Plants of Lolium perenne L. cv. S23 were grown in sand culturesupplied with either ammonium (NH4+) or nitrate (NO3)in an otherwise complete nutrient solution at 12°C or 20°C.Three weeks after germination, plants were clipped weekly tosimulate grazing. After 10 weeks growth all nitrogen (N) wassupplied enriched with 15N to quantify the effects of form ofN supply and temperature on the relative ability of currentroot uptake and remobilization to supply N for laminae regrowth. The form of N supply had no effect on the dry matter partitioning,while at 20°C more dry weight was allocated to laminae regrowthand less to the remaining plant material. The current root uptakeof N, which subsequently appeared in the laminae regrowth, wassimilar for plants supplied with NH4+ or NO3, and bothwere equally reduced at the lower temperature of growth. Remobilizationof N to laminae regrowth was greater for plants receiving NH4+than NO3; remobilization with either form of N supplywas reduced at the lower temperature of growth. Remobilizationwas reduced to a lesser extent at 12°C than current rootuptake. It was concluded that remobilization became relativelymore important in supplying N for regrowth of laminae at lowertemperatures. Key words: Lolium perenne, ammonium, nitrate, temperature, remobilization  相似文献   

17.
The effects of nitrogen (N) availability on cell number andcell size, and the contribution of these determinants to thefinal area of fully expanded leaves of sunflower (Helianthusannuus L.) were investigated in glasshouse experiments. Plantswere given a high (N =315 ppm) or low (N=21 ppm) N supply andwere transferred between N levels at different developmentalstages (5 to 60% of final size) of target leaves. The dynamicsof cell number in unemerged (< 0.01 m in length) leaves ofplants growing at high and low levels of N supply were alsofollowed. Maximum leaf area (LAmax) was strongly (up to two-fold)and significantly modified by N availability and the timingof transfer between N supplies, through effects on leaf expansionrate. Rate of cell production was significantly (P<0.05)reduced in unemerged target leaves under N stress, but therewas no evidence of a change in primordium size or in the durationof the leaf differentiation–emergence phase. In fullyexpanded leaves, number of cells per leaf (Ncell), leaf areaper cell (LAcell) and cell area (Acell) were significantly reducedby N stress. WhileLAcell and Acellresponded to changeover treatmentsirrespective of leaf size, significant (P<0.05) changes inNcellonly occurred when the changeover occurred before the leafreached approx. 10% of LAmax. There were no differential effectsof N on numbers of epidermal vs. mesophyll cells. The resultsshow that the effects of N on leaf size are largely due to effectson cell production in the unemerged leaf and on both cell productionand expansion during the first phase of expansion of the emergedleaf. During the rest of the expansion period N mainly affectsthe expansion of existing cells. Cell area plasticity permitteda response to changes in N supply even at advanced stages ofleaf expansion. Increased cell expansion can compensate forlow Ncellif N stress is relieved early in the expansion of emergedleaves, but in later phases Ncellsets a limit to this response.Copyright 1999 Annals of Botany Company Helianthus annuus, leaf expansion, leaf cell number, leaf cell size, nitrogen, leaf growth, sunflower.  相似文献   

18.
Epidermal Cell Division and the Coordination of Leaf and Tiller Development   总被引:7,自引:2,他引:5  
Initiation and development of grass leaves and tillers are oftendescribed individually with little attention to possible interrelationshipsamong organs. In order to better understand these interrelationships,this research examined epidermal cell division during developmentaltransitions at the apical meristem of tall fescue (Festuca arundinaceaSchreb.). Ten seedlings were harvested each day for a 9-d period,and lengths of main shoot leaves and primary tillers were measured.In addition, numbers and lengths of epidermal cells were determinedfor 0·5 mm segments along the basal 3 mm of each leafand tiller. Primordia development and onset of rapid leaf elongationwere characterized by an increase in the number of cells perepidermal file with mean cell length remaining near 20 µmper cell. After the leaf had lengthened to 1-1·5 mm,cells near the leaf tip ceased dividing and increased in length,at which time leaf elongation rate increased rapidly. Liguleformation, marking the boundary between blade and sheath cells,occurred prior to leaf tip emergence above the whorl of oldersheaths, while the earliest differentiation between blade andsheath cells probably began when leaves were < 1 mm long.Major transitions in leaf and tiller development appeared tobe synchronized among at least three adjacent nodes. At theoldest node, cessation of cell division in the leaf sheath wasaccompanied by initiation of cell division and elongation inthe associated tiller bud. At the next younger node the ligulewas being initiated, while at the youngest node cell divisioncommenced in the leaf primordium, as elongation of a new leafblade began. This synchronization of events suggests a key rolefor the cell division process in regulating leaf and tillerdevelopment.Copyright 1994, 1999 Academic Press Festuca arundinacea Schreb., tall fescue, cell division, leaf initiation, tillering, ligule development  相似文献   

19.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

20.
Trifolium alpinum L. is a high-quality alpine forage plant growingspontaneously from 1900 to 2800 m above sea level and is widelydistributed in Piedmont and the Valle d'Aosta (Italy), whereit can reach population frequencies of 90 per cent. Yields weredetermined on forage harvested in the Valle dell'Orco (Piedmont)and were comparable to cultivated clovers from higher latitudes;yields decreased progressively as the elevation increased. Thechemical and nutritional characteristics of the forage, thoughcomparable to clovers cultivated in the Po valley (Italy), were,however, more constant. The structure of the leaf lamina asrelated to elevation was investigated using light microscopy,TEM and SEM. This is complemented by data on chlorophyll concentration,succulence, specific leaf weight and area. At all elevationsT. alpinum lacks, apart from bundle sheath cell chloroplastsin a centrifugal arrangement, the structural characteristicsof C4 plants. The chlorophyll a:b ratio (less than four) istypical of a C2 plant. Succulence indices (S and Sm) were verylow, making CAM pathway photosynthesis unlikely. Unusual anddifficult to interpret structures included: small functionalchloroplasts in both the epidermises, stomata present almostexclusively in the upper epidermis and mitochondria enveloped(or enclosed) by chloroplasts. It was observed that, as theelevation increases, populations are selected which are well-adaptedfor gas exchange (increase in specific leaf area, stomatal densityand intercellular spaces) and characterized by a decrease inthe grana thylacoid:integrana thylacoid ratio (consistent withthe increase in the chlorophyll a:b ratio), the per cent water,Sm and the specific leaf weight. Trifolium alpinum L., alpine trefoil, leaf structures, photosynthesis, yield, elevation, C2, C4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号