首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report our initial efforts in the analysis of endogenous nuclear receptor coactivator complexes as a research bridging strand of the Nuclear Receptor Signaling Atlas (NURSA) (www.NURSA.org). A proteomic approach is used to systematically isolate a variety of coactivator complexes using HeLa cells as a model cell line and to identify the coactivator-associated proteins with mass spectrometry. We have isolated and identified seven coactivator complexes including the p160 steroid receptor coactivator family, cAMP response element binding protein-binding protein, p300, coactivator of activating protein-1 and estrogen receptors, and E6 papillomavirus-associated protein. The newly identified coactivator-associated proteins provide unbiased clues and links for understanding of the endogenous hormone receptor coregulator network and its regulation. We hope that the electronic availability of these data to the general scientific community will facilitate generation and testing of new hypotheses to further our understanding of nuclear receptor signaling and coactivator functions.  相似文献   

2.
Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53‐independent MDM2‐drug responsive‐binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin‐3 responsive MDM2‐binding proteins that are perturbed independent of cell density using SWATH‐MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin‐3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin‐3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin‐3 treated cells. Mitotracker confirmed that Nutlin‐3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin‐3 treatment. Proximity ligation identified rearrangements of cellular protein–protein complexes in situ. In response to Nutlin‐3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein–protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein–protein complexes in drug‐treated cells.  相似文献   

3.
The mitochondrial inner membrane harbors the complexes of the respiratory chain and translocase complexes for precursor proteins. We have identified a further subunit of the carrier translocase (TIM22 complex) that surprisingly is identical to subunit 3 of respiratory complex II, succinate dehydrogenase (Sdh3). The membrane-integral protein Sdh3 plays specific functions in electron transfer in complex II. We show by genetic and biochemical approaches that Sdh3 also plays specific functions in the TIM22 complex. Sdh3 forms a subcomplex with Tim18 and is involved in biogenesis and assembly of the membrane-integral subunits of the TIM22 complex. We conclude that the assembly of Sdh3 with different partner proteins, Sdh4 and Tim18, recruits it to two different mitochondrial membrane complexes with functions in bioenergetics and protein biogenesis, respectively.  相似文献   

4.
Protein complexes are an intrinsic aspect of life in the membrane. Knowing which proteins are assembled in these complexes is therefore essential to understanding protein function(s). Unfortunately, recent high throughput protein interaction studies have failed to deliver any significant information on proteins embedded in the membrane, and many membrane protein complexes remain ill defined. In this study, we have optimized the blue native-PAGE technique for the study of membrane protein complexes in the inner and outer membranes of Escherichia coli. In combination with second dimension SDS-PAGE and mass spectrometry, we have been able to identify 43 distinct protein complexes. In addition to a number of well characterized complexes, we have identified known and orphan proteins in novel oligomeric states. For two orphan proteins, YhcB and YjdB, our findings enable a tentative functional assignment. We propose that YhcB is a hitherto unidentified additional subunit of the cytochrome bd oxidase and that YjdB, which co-localizes with the ZipA protein, is involved in cell division. Our reference two-dimensional blue native-SDS-polyacrylamide gels will facilitate future studies of the assembly and composition of E. coli membrane protein complexes during different growth conditions and in different mutant backgrounds.  相似文献   

5.
With the characterization of the total genomes of Arabidopsis thaliana and Oryza sativa , several putative plasma membrane components have been identified. However, a lack of knowledge at the protein level, especially for hydrophobic proteins, have hampered analyses of physiological changes. To address whether protein complexes may be present in the native membrane, we subjected plasma membranes isolated from Spinacia oleracea leaves to blue-native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is well established in the separation of functional membrane protein complexes from mitochondria and chloroplasts, but a resolved protein complex pattern from PM of eukaryotic cells has previously not been reported. Using this method, protein complexes from Spinacia oleracea PM could be efficiently solubilized and separated, including the highly hydrophobic aquaporin (apparent molecular mass 230 kDa), a putative tetramer of H+-ATPase, and several less abundant complexes with apparent masses around or above 750 kDa. After denaturation and separation of the complexes into their subunits in a second dimension (SDS-PAGE), several of the complexes were identified as hydrophobic membrane proteins. Large amounts of protein (up to 1 mg) can be resolved in each lane, which suggests that the method could be used to study also low-abundance protein complexes, e.g. under different physiological conditions.  相似文献   

6.
Filamentous, heterocystous cyanobacteria are capable of nitrogen fixation and photoautotrophic growth. Nitrogen fixation takes place in heterocysts that differentiate as a result of nitrogen starvation. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase, e.g. by downregulation of oxygenic photosynthesis. The ATP and reductant requirement for the nitrogenase reaction is considered to depend on Photosystem I, but little is known about the organization of energy converting membrane proteins in heterocysts. We have investigated the membrane proteome of heterocysts from nitrogen fixing filaments of Nostoc punctiforme sp. PCC 73102, by 2D gel electrophoresis and mass spectrometry. The membrane proteome was found to be dominated by the Photosystem I and ATP-synthase complexes. We could identify a significant amount of assembled Photosystem II complexes containing the D1, D2, CP43, CP47 and PsbO proteins from these complexes. We could also measure light-driven in vitro electron transfer from Photosystem II in heterocyst thylakoid membranes. We did not find any partially disassembled Photosystem II complexes lacking the CP43 protein. Several subunits of the NDH-1 complex were also identified. The relative amount of NDH-1M complexes was found to be higher than NDH-1L complexes, which might suggest a role for this complex in cyclic electron transfer in the heterocysts of Nostoc punctiforme.  相似文献   

7.
The cell envelope of Escherichia coli is an essential structure that modulates exchanges between the cell and the extra-cellular milieu. Previous proteomic analyses have suggested that it contains a significant number of proteins with no annotated function. To gain insight into these proteins and the general organization of the cell envelope proteome, we have carried out a systematic analysis of native membrane protein complexes. We have identified 30 membrane protein complexes (6 of which are novel) and present reference maps that can be used for cell envelope profiling. In one instance, we identified a protein with no annotated function (YfgM) in a complex with a well-characterized periplasmic chaperone (PpiD). Using the guilt by association principle, we suggest that YfgM is also part of the periplasmic chaperone network. The approach we present circumvents the need for engineering of tags and protein overexpression. It is applicable for the analysis of membrane protein complexes in any organism and will be particularly useful for less-characterized organisms where conventional strategies that require protein engineering (i.e., 2-hybrid based approaches and TAP-tagging) are not feasible.  相似文献   

8.
The cytoplasmic domain of band 3, the main intrinsic protein of the erythrocyte membrane, possesses binding sites for a variety of other proteins of the membrane and the cytoplasm, including the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and aldolase. We have studied the stoichiometry of the complexes of human band 3 protein and GAPDH and the competition by aldolase for the binding sites. In addition, we have tried to verify the existence of mixed band 3/GAPDH/aldolase complexes, which could represent the nucleus of a putative glycolytic multienzyme complex on the erythrocyte membrane. The technique applied was analytical ultracentrifugation, in particular sedimentation equilibrium analysis, on mixtures of detergent-solubilized band 3 and dye-labelled GAPDH, in part of the experiments supplemented by aldolase. The results obtained were analogous to those reported for the binding of hemoglobin, aldolase and band 4.1 to band 3: (1) the predominant or even sole band 3 oligomer forming the binding site is the tetramer. (2) The band 3 tetramer can bind up to four tetramers of GAPDH. (3) The band 3/GAPDH complexes are unstable. (4) Artificially stabilized band 3 dimers also represent GAPDH binding sites. In addition it was found that aldolase competes with GAPDH for binding to the band 3 tetramer, and that ternary complexes of band 3 tetramers, GAPDH and aldolase do exist.  相似文献   

9.
J M Wu  J S Nickels  J R Fisher 《Enzyme》1977,22(1):60-69
Previous studies have shown that a group of nitrogen catabolic enzymes including xanthine dehydrogenase, purine nucleoside phosphorylase, and tyrosine aminotransferase are all increased in chick liver by dietary protein as well as single amino acids (e.g. methionine) and certain antimetabolites (e.g. hydrazine). A similar enzyme response pattern can be obtained with insulin. This hormone causes an enhanced rate of XDH synthesis and gives nonadditive results with protein, hydrazine and methionine. Furthermore, a vitamin B6 dependency was observed in responses to both high protein diets and insulin, all suggesting a common regulatory mechanism. In this system dietary protein and insulin may act similarly by increasing the availability of amino acids to the liver -- in one case by supplying amino acids through the diet and in the other by increasing amino acid uptake.  相似文献   

10.
11.
12.
Lipoic acid is an essential cofactor for a variety of mitochondrial enzymes. We have characterised a gene from Saccharomyces cerevisiae which appears to encode a protein involved in the attachment of lipoic acid groups to the pyruvate dehydrogenase and glycine decarboxylase complexes. The predicted protein product of this gene has significant identity to the lipoyl ligase B of both Escherichia coli and Kluyveromyces lactis. A strain harbouring a null allele of this S. cerevisiae gene is respiratory deficient due to inactive pyruvate dehydrogenase, and is unable to utilise glycine as a sole nitrogen source.  相似文献   

13.
Yu F  Anaya C  Lewis JP 《Proteomics》2007,7(3):403-412
Although hemin is an indispensable nutrient for the oral pathogen Prevotella intermedia, not much is known regarding the molecular mechanisms of hemin acquisition. The availability of the genomic sequence of the bacterium allowed us to apply proteomic approaches to identify proteins that may be mediating the hemin acquisition process. As hemin acquisition mechanisms have been shown to be induced in iron-depleted conditions, we applied proteomic approaches to detect those proteins whose expressions were affected by iron. We analyzed 40 protein spots and identified 19 such proteins. Interestingly, two proteins drastically upregulated in iron-depleted conditions, PIN0009 and PINA0611, are homologs of hemin uptake receptors in other bacteria. PIN0009 is predicted to be an outer membrane lipoprotein. It is encoded by a gene that is the first of a seven-gene genomic locus encoding proteins of a novel hemin acquisition system. The second protein, PINA0611, is a homolog of numerous TonB-dependent outer membrane receptors including outer membrane iron uptake receptors of various Gram-negative bacteria. There was also another protein, regulated by iron, that was previously demonstrated to bind hemoglobin in P. intermedia. Finally, we identified a thioredoxin-like protein that has a novel outer membrane location.  相似文献   

14.
Thus far, the role of the Escherichia coli signal recognition particle (SRP) has only been studied using targeted approaches. It has been shown for a handful of cytoplasmic membrane proteins that their insertion into the cytoplasmic membrane is at least partially SRP-dependent. Furthermore, it has been proposed that the SRP plays a role in preventing toxic accumulation of mistargeted cytoplasmic membrane proteins in the cytoplasm. To complement the targeted studies on SRP, we have studied the consequences of the depletion of the SRP component Fifty-four homologue (Ffh) in E. coli using a global approach. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and immunoblotting. Our analysis showed that depletion of Ffh led to the following: (i) impaired kinetics of the biogenesis of the cytoplasmic membrane proteome; (ii) lowered steady-state levels of the respiratory complexes NADH dehydrogenase, succinate dehydrogenase, and cytochrome bo(3) oxidase and lowered oxygen consumption rates; (iii) increased levels of the chaperones DnaK and GroEL at the cytoplasmic membrane; (iv) a σ(32) stress response and protein aggregation in the cytoplasm; and (v) impaired protein synthesis. Our study shows that in E. coli SRP-mediated protein targeting is directly linked to maintaining protein homeostasis and the general fitness of the cell.  相似文献   

15.
Long J  Wang X  Gao H  Liu Z  Liu C  Miao M  Liu J 《Life sciences》2006,79(15):1466-1472
Malonaldehyde (MDA) is a product of oxidative damage to lipids, amino acids and DNA, and accumulates with aging and diseases. MDA can possibly react with amines to modify proteins to inactivity enzymes and also modify nucleosides to cause mutagenicity. Mitochondrial dysfunction is a major contributor to aging and age-associated diseases. We hypothesize that accumulated MDA due to mitochondrial dysfunction during aging targets mitochondrial enzymes to cause further mitochondrial dysfunction and contribute to aging and age-associated diseases. We investigated the effects of MDA on mitochondrial respiration and enzymes (membrane complexes I, II, III and IV, and dehydrogenases, including alpha-ketoglutaric dehydrogenase (KGDH), pyruvate dehydrogenase (PDH), malate dehydrogenase (MDH)) in isolated rat liver mitochondria. MDA showed a dose-dependent inhibition on mitochondrial NADH-linked respiratory control ratio (RCR) and ADP/O ratio declined from the concentrations of 0.2 and 0.8 micromol/mg protein, respectively, and succinate-linked mitochondrial RCR and ADP/O ratio declined from 1.6 and 0.8 micromol/mg protein. MDA also showed dose-dependent inhibition on the activity of PDH, KGDH and MDH significantly from 0.1, 0.2 and 2 micromol/mg protein, respectively. Activity of the complexes I and II was depressed by MDA at 0.8 and 1.6 micromol/mg protein. However, MDA did not affect activity of complexes III and IV in the concentration range studied (0-6.4 micromol/mg protein). These results suggest that MDA can cause mitochondrial dysfunction by inhibiting mitochondrial respiration and enzyme activity, and the sensitivity of the enzymes examined to MDA is in the order of PDH>KGDH>complexes I and II>MDH>complexes III and IV.  相似文献   

16.
17.
Caveolae are 50-100-nm membrane microdomains that represent a subcompartment of the plasma membrane. Previous morphological studies have implicated caveolae in (a) the transcytosis of macromolecules (including LDL and modified LDLs) across capillary endothelial cells, (b) the uptake of small molecules via a process termed potocytosis involving GPI-linked receptor molecules and an unknown anion transport protein, (c) interactions with the actin-based cytoskeleton, and (d) the compartmentalization of certain signaling molecules, including G- protein coupled receptors. Caveolin, a 22-kD integral membrane protein, is an important structural component of caveolae that was first identified as a major v-Src substrate in Rous sarcoma virus transformed cells. This finding initially suggested a relationship between caveolin, transmembrane signaling, and cellular transformation. We have recently developed a procedure for isolating caveolin-rich membrane domains from cultured cells. To facilitate biochemical manipulations, we have applied this procedure to lung tissue--an endothelial and caveolin-rich source-allowing large scale preparation of these complexes. These membrane domains retain approximately 85% of caveolin and approximately 55% of a GPI-linked marker protein, while they exclude > or = 98% of integral plasma membrane protein markers and > or = 99.6% of other organelle-specific membrane markers tested. Characterization of these complexes by micro-sequencing and immuno- blotting reveals known receptors for modified forms of LDL (scavenger receptors: CD 36 and RAGE), multiple GPI-linked proteins, an anion transporter (plasma membrane porin), cytoskeletal elements, and cytoplasmic signaling molecules--including Src-like kinases, hetero- trimeric G-proteins, and three members of the Rap family of small GTPases (Rap 1--the Ras tumor suppressor protein, Rap 2, and TC21). At least a fraction of the actin in these complexes appeared monomeric (G- actin), suggesting that these domains could represent membrane bound sites for microfilament nucleation/assembly during signaling. Given that the majority of these proteins are known molecules, our current studies provide a systematic basis for evaluating these interactions in vivo.  相似文献   

18.
In the long-slender bloodstream form of Trypanosoma brucei, the enzyme dihydrolipoamide dehydrogenase exists in the absence of the 2-oxo-acid dehydrogenase complexes of which it is normally a component, and appears to be associated with the plasma membrane of the organism [Danson, M. J., Conroy, K., McQuattie, A. & Stevenson, K. J. (1987) Biochem. J. 243, 661-665]. In the present paper, a complete subcellular fractionation of T. brucei has been carried out and, by comparison with marker enzymes, it is confirmed that the dihydrolipoamide dehydrogenase is indeed associated with the plasma membrane. In addition, we now provide evidence that the distribution of the enzyme is over the whole surface of the membrane, including the flagellar pocket region, and that the enzyme is not found in any other cellular fraction. A study of the latency of the enzyme suggests that it is located on the cytoplasmic surface of the plasma membrane. The discovery of the presumed substrate of dihydrolipoamide dehydrogenase, lipoic acid, is reported for T. brucei. Using a biological assay involving a strain of Escherichia coli that requires lipoic acid for growth, we have found that acid-hydrolysed extracts of T. brucei contain 1.7 (+/- 0.2) ng of the cofactor/mg protein. The chemical nature of the lipoic acid was confirmed by gas chromatography/mass spectrometry.  相似文献   

19.
The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery—suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these—the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex—as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.  相似文献   

20.
The family of membrane-associated guanylate kinases (MAGUK) comprises peripheral membrane proteins involved in the formation of specialized cell-cell junctions. MAGUK proteins possess a conserved domain composition, containing PDZ, guanylate kinase, and SH3 or WW domains. MAGI-1 is a recently identified member of the MAGUK protein family. Three splice variantsof MAGI-1 have been characterized to date, including MAGI-1a, -1b, and -1c. MAGI-1b is predominantly associated with the crude membrane fraction. Here we show that the fifth PDZ domain of MAGI-1b is essential for membrane localization. We have also identified beta-catenin as a potential ligand for this PDZ domain. MAGI-1b forms complexes with beta-catenin and E-cadherin during the formation of cell-cell junctions in MDCK cells. In agreement with this observation, a significant portion of a GFP fusion of MAGI-1b localizes to the basolateral membrane of polarized MDCK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号