首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To further investigate our finding of high levels of spontaneous aneuploidy in somatic cells of Alzheimer's disease (AD) patients (Migliore et al. 1997), we studied the molecular cytogenetics of eight patients with sporadic AD and six healthy controls of similar age. Cytochalasin B-blocked binucleated peripheral blood lymphocytes from the AD patients and unaffected controls were used to measure micronucleus induction or other aneuploidy events, such as the presence of malsegregation in interphase nuclei (representing chromosome loss and gain). Dual-color fluorescence in situ hybridization (FISH) with differential labeled DNA probes was applied. We used a probe specific for the centromeres of chromosomes 13 and 21 combined with a single cosmid for the Down's syndrome region (21q22.2) to obtain information on spontaneous chromosome loss and gain frequencies for both chromosomes (13 and 21). FISH data showed that AD lymphocytes had higher frequencies of chromosome loss (evaluated as fluorescently labeled micronuclei) for both chromosomes, as well as higher frequencies of aneuploid interphase nuclei, again involving both chromosomes, compared to control lymphocytes. However, aneuploidy for chromosome 21 was more frequent than for chromosome 13 in AD patients. This preferential occurrence of chromosome 21 in malsegregation in somatic cells of AD patients raises the hypothesis that mosaicism for trisomy of chromosome 21 could underlie the dementia phenotype in AD patients, as well as in elderly Down's syndrome patients.  相似文献   

2.
K. S. Reddy 《Human genetics》1997,101(3):339-345
Cytogenetic data on products of conception from spontaneous abortions studied over a 10-year period have been reviewed for double trisomies. A total of 3034 spontaneous abortions were karyotyped between 1986 and 1997. Twenty-two cases with double trisomy, one case with triple trisomy, and a case with a trisomy and monosomy were found. The tissues studied were mostly sac, villi, or placenta. The gestational age ranged from 6 to 11 weeks and the mean age was 8.2 ± 1.7 (SD) weeks. The mean maternal age in years was 35.9 ± 5.3. Of the twenty-two cases, four were mosaics. All but two of the cases involved autosomal aneuploidies. The double trisomies included chromosomes 2, 4, 5, 7, 8, 12, 13, 14, 15, 16, 17, 18, 20, 21, and 22. The chromosomes that were trisomic in more than one double trisomy case were numbers 16 (8 cases), 8 (5 cases), 15 (4 cases), 2, 13, and 21 (3 cases each), and 5, 7, 14, 18, 20, 22, and X (2 cases). The triple trisomy involved chromosomes 18, 21, and X. The monosomy and trisomy case was a mosaic, with a monosomy 21 in all cells and some cells also with a trisomy 5. The double trisomies cited for the first time in this study were 4/13, 5/16, 8/14, 8/15, 14/21, 15/20, and 7/12. The pooled mean maternal age for double trisomy cases (34.1 ± 5.7 years) was higher than that for single trisomy cases (31 ± 6.1 years). The difference was statistically significant at P = < 0.001. The pooled mean gestational age of spontaneous abortions was lower for double trisomy (8.7 ± 2.2 weeks) than for reported single trisomy cases (10.1 ± 2.9 weeks). This difference is also statistically significant at P = < 0.001. The sex ratio among double trisomies was 15 females to 13 males. This difference was not statistically significant from the expected 1 : 1. Received: 27 June 1997 / Accepted: 4 September 1997  相似文献   

3.
The co-occurrence of two numerical chromosomal abnormalities in same individual (double aneuploidy) is relatively rare and its clinical presentations are variable depending on the predominating aneuploidy or a combination effect of both. Furthermore, double aneuploidy involving both autosomal and sex chromosomes is seldom described. In this study, we present three patients with double aneuploidy involving chromosome 21 and sex chromosomes. They all had the classical non disjunction trisomy 21; that was associated with monosomy X in two of them and double X in the other. Clinically, they had most of the phenotypic features of Down syndrome as well as variable features characteristic of Turner or Klinefelter syndrome. Cytogenetic studies and fluorescence in situ hybridization (FISH) analysis were carried out for all patients and their parents. The first patient was a male, mosaic with 2 cell lines (45,X/47,XY,+21) by regular banding techniques and had an affected sib with Down syndrome (47,XY,+21). The second was a female, mosaic (46,X,+21/47,XX,+21) where monosomy X was detected only by FISH in 15 percentages of cells, nevertheless, stigmata of Turner syndrome was more obvious in this patient. The third patient had non mosaic double trisomy; Down-Klinefelter (48,XXY,+21) presented with Down syndrome phenotype. Parental karyotypes and FISH studies for these patients were normal with no evidence of mosaicism. In this report, we review the variable clinical presentations among the few reported cases with the same aneuploidy in relation to ours. Also, the proposed mechanisms of double aneuploidy and the occurrence of non-disjunction in more than one family member are discussed. This study emphasizes the importance of molecular cytogenetics studies for more than one tissue in cases with atypical features of characteristic chromosomal aberration syndromes. To our knowledge, this is the first report of double aneuploidy, Down-Turner and Down-Klinefelter syndromes in Egyptian patients.  相似文献   

4.
5.
Chromosomal aneuploidies are responsible for severe human genetic diseases. Aiming at creating models for such disorders, we have generated human embryonic stem cell (hESC) lines from pre-implantation genetic screened (PGS) embryos. The overall analysis of more than 400 aneuploid PGS embryos showed a similar risk of occurrence of monosomy or trisomy for any specific chromosome. However, the generation of hESCs from these embryos revealed a clear bias against monosomies in autosomes. Moreover, only specific trisomies showed a high chance of survival as hESC lines, enabling us to present another categorization of human aneuploidies. Our data suggest that chromosomal haploinsufficiency leads to lethality at very early stages of human development.  相似文献   

6.
Summary A clinically normal 28-year-old woman had three conceptuses with trisomy 21 and one normal child. She showed minimal cytogenetic evidence of mosaicism: 4% of her blood cells and 6% of skin fibroblasts had trisomy 21. Also, 7% of her blood cells showed aneuploidy of the X chromosome which was associated with premature centromere division (PCD, X); 6% of fibroblasts showed trisomy 18, 10% of fibroblasts showed PCD,21, and 1% PCD, 18. It is unlikely that this woman is a constitutional mosaic for trisomies X, 18, and 21, all at low levels. We suggest that she has a predisposition to irregular centromere separation and that chromosomes X, 18, and 21 are most susceptible to its action.  相似文献   

7.
Recurrent miscarriage due to sporadic chromosomal abnormalities may simply be a consequence of the dramatic increase of trisomic conceptions with increased maternal age. However, it is also possible that some couples are at increased risk of abnormalities as a result of gonadal mosaicism, factors affecting chromosome structure and segregation, increased sperm aneuploidy in the male partner, or accelerated "aging" of the ovaries. We report cytogenetic and molecular findings from 122 spontaneous abortions (SAs) from 54 couples who were ascertained as having two or more documented aneuploid or polyploid SAs. The distribution of abnormalities in this group was similar to those from 307 SAs that involved chromosome abnormalities and were diagnosed at the same center but did not involve documented recurrent aneuploidy/polyploidy. Although recurrence of the same abnormality was observed in eight families, this number was equal to that expected by chance, indicating that gonadal mosaicism is rarely the explanation for recurrence. The origin of the abnormality was determined in 37 SAs from 23 of the couples in the study. A maternal meiotic origin was involved in 30 trisomies and in 1 triploid SA; 3 additional maternal trisomies were of possible somatic origin. A paternal origin was found in the remaining two trisomies and in one triploid SA. In addition, one double trisomy was the consequence of both a maternal and a paternal meiotic error. These results confirm that the etiology of trisomy is predominantly a result of meiotic errors related to increased maternal age, regardless of whether the couple has experienced one or multiple aneuploid SAs. Furthermore, this is true even when a second SA involves the same abnormality. Nonetheless, these data do not exclude some population variability in risk for aneuploidy.  相似文献   

8.
Germline mosaicism has been thought to be a rare cause of aneuploidy in the human population. Recent evidence from cytological and population studies suggests otherwise. Approximately 5% of young couples with a Down syndrome child show evidence of germinal mosaicism. Molecular cytogenetic analysis of oocytes has proved germinal or gonadal mosaicism for trisomies of chromosomes 13 and 21 in several studies involving both oocytes and first polar bodies. Most recently direct analysis of fetal ovarian pre-meiotic, meiotic, and stromal cells proved low level trisomy 21 mosaicism in every sample tested. Based upon this evidence, germinal or gonadal mosaicism is likely to make a significant contribution to aneuploidy in the human population, particularly where younger women are concerned.  相似文献   

9.
V S Baranov 《Ontogenez》1983,14(6):573-589
A review of recent studies on mammalian embryos, mostly mice, with chromosomal aberrations. Morphological, biochemical and cytological studies on mice with polyploidy, aneuploidy and some structural aberrations are discussed. Some types of chromosomal aberrations, especially monosomy for individual chromosomes (2, 5, 7, or 17), are already evident during early cleavage and are inevitably lethal by the morula stage. A direct relationship exists between the duration of survival and chromosome aberrations (trisomy and monosomy) for every chromosome. Differential gene activity of the mouse autosomes becomes evident already at the very early developmental stages. Some feasible causes of the early death of embryos with autosomal monosomy are discussed and a hypothetical mechanism for the activation of homologous autosomes at the early developmental stages is proposed. Perspectives of future studies in cytogenetics of mammalian development are outlined.  相似文献   

10.
Aneuploidy, an abnormal number of chromosomes, has previously been considered irremediable. Here, we report findings that euploid cells increased among cultured aneuploid cells after exposure to the protein ZSCAN4, encoded by a mammalian-specific gene that is ordinarily expressed in preimplantation embryos and occasionally in stem cells. For footprint-free delivery of ZSCAN4 to cells, we developed ZSCAN4 synthetic mRNAs and Sendai virus vectors that encode human ZSCAN4. Applying the ZSCAN4 biologics to established cultures of mouse embryonic stem cells, most of which had become aneuploid and polyploid, dramatically increased the number of euploid cells within a few days. We then tested the biologics on non-immortalized primary human fibroblast cells derived from four individuals with Down syndrome—the most frequent autosomal trisomy of chromosome 21. Within weeks after ZSCAN4 application to the cells in culture, fluorescent in situ hybridization with a chromosome 21-specific probe detected the emergence of up to 24% of cells with only two rather than three copies. High-resolution G-banded chromosomes further showed up to 40% of cells with a normal karyotype. These findings were confirmed by whole-exome sequencing. Similar results were obtained for cells with the trisomy 18 of Edwards syndrome. Thus a direct, efficient correction of aneuploidy in human fibroblast cells seems possible in vitro using human ZSCAN4.  相似文献   

11.
We investigated the relationship between DNA ploidy and alterations in chromosomes 1, 8, 12, 16, 17, and 18 in 63 breast carcinoma samples by static cytofluorometry and fluorescence in situ hybridization. Thirty specimens were diploid and 33 were aneuploid. In aneuploid samples, the DNA index value ranged from 1.3 to 3.1, with a main peak near tetraploid values. Diploid clones were present in 21 of 33 aneuploid specimens. Fluorescence in situ hybridization analysis showed a heterogeneous degree of alterations in diploid specimens: one sample was normal, 16 samples had one to three chromosome alterations involving mostly chromosomes 1, 16, and 17, and 13 samples an even higher degree of alterations. The 33 aneuploid specimens showed a very high number of signals (four, five, or more). All the investigated chromosomes were affected in 23 of 33 specimens. Alterations in chromosomes 1 and 17 were detected to a similar percentage in diploid and aneuploid samples, whereas chromosome 16 monosomy was more frequent in diploid samples. Overrepresentation of chromosomes 8, 12, 16, and 18 was significantly higher in aneuploid than in diploid samples. Based on these results, we suggest that diploid and aneuploid breast carcinomas are genetically related. Chromosome 1 and 17 alterations and chromosome 16 monosomy are early changes. Allelic and chromosomal accumulations occur during progression of breast carcinoma by different mechanisms. The high clone heterogeneity found in 17 of 33 aneuploid samples could not be completely explained by endoreduplication and led to the suggestion that chromosomal instability concurs with aneuploidy development. This different evolutionary pathway might be clinically relevant because clone heterogeneity might cause metastasis development and resistance to therapy.  相似文献   

12.
To err (meiotically) is human: the genesis of human aneuploidy   总被引:2,自引:0,他引:2  
Aneuploidy (trisomy or monosomy) is the most commonly identified chromosome abnormality in humans, occurring in at least 5% of all clinically recognized pregnancies. Most aneuploid conceptuses perish in utero, which makes this the leading genetic cause of pregnancy loss. However, some aneuploid fetuses survive to term and, as a class, aneuploidy is the most common known cause of mental retardation. Despite the devastating clinical consequences of aneuploidy, relatively little is known of how trisomy and monosomy originate in humans. However, recent molecular and cytogenetic approaches are now beginning to shed light on the non-disjunctional processes that lead to aneuploidy.  相似文献   

13.
It is known that up to 50% spontaneous abortions (SA) in the first trimester of pregnancy are associated with chromosomal abnormalities. We studied mosaic forms of chromosomal abnormalities in 650 SA specimens using interphase MFISH and DNA probes for chromosomes 1, 9, 13/21, 14/22, 15, 16, 18, X, and Y. Numerical chromosomal abnormalities were discovered in 58.2% (378 cases). They contained combined chromosomal abnormalities (aneuploidy of several chromosomes or aneuploidy in combination with polyploidy in the same specimen) in 7.7% (29 cases) or 4.5% of the entire SA sample; autosomal trisomy, in 45% (18.2% in chromosome 16, 8.9% in chromosomes 14/22, 7.9% in chromosomes 13/21, 3.1% in chromosome 18, and 1.4% in chromosome 9). Chromosome X aneuploidy was found in 27% cases, among which 9.6% represented chromosome X monosomy. Polyploidy was observed in 22.9% cases. In 5.1% cases, we observed mosaic form of autosomal monosomy. Among the SA cases with chromosomal abnormalities mosaicism was observed in 50.3% (∼ 25% of the entire SA sample). The results of the present study indicate that significant amount of chromosomal abnormalities in SA cells are associated with disturbances in mitotic chromosome separation, which represents the most common cause of intrauterine fetal death. It was also shown that original collection of DNA probes and the technique of interphase MFISH could be useful for detection of chromosomal mosaicism in prenatal cell specimens.  相似文献   

14.
A P Dyban 《Ontogenez》1974,5(6):568-581
When using heterozygotic carries of reciprocal or Robertsonian translocations and new methods permitting to identify homologous chromosomes in the karyotype, it is possible to obtain mouse embryos with trisomy and monosomy of any of the autosomes. This allows to analyze the effect of excess or deficiency of genetic material concerning definite linkage groups on morphogenetic processes. The cleavage and formation of blastocyst are not controlled by the zygote chromosomes; beginning from the late blastocyst stage in Muridae all or almost all autosomes display the functional activity. At these stages embryos with monosomy are eliminated whereas the embryos with autosome trisomy survive till later stages. No dependence was found between the time of embryonic death and the size of autosome in excess. The importance of data obtained by means of new methods of cytogenetic analysis is discussed.  相似文献   

15.
Summary Cell cultures grown from peripheral neurofibromas of three patients suffering from sporadic peripheral neurofibromatosis (NF) were analysed cytogenetically at early in vitro passages. The NF-cultures exhibited a 6.7-fold higher frequency of aneuploid mitoses, including pseudodiploids, than the control cultures derived from the skin of three healthy donors. The predominant numerical anomaly was monosomy 22. Several, as yet unidentified marker chromosomes occurred in the NF-cultures, which also showed a much higher level of unstable chromosomal anomalies. The role of monosomy 22 in tumorigenesis of meningiomas and neurofibromas is discussed.  相似文献   

16.
The frequency of spontaneous aneuploidy of the four autosomes and sex chromosomes in the interphase nuclei of cultivated and uncultured lymphocytes from clinically healthy men was examined by use of two-color fluorescent in situ hybridization (FISH). It was shown that in uncultured cells from the individuals examined autosomal nullosomies were practically not detected (the frequency 0 to 0.01%). At the same time, the frequency of such cells with either Y, or X nullosomy was at least an order of magnitude higher (about 0.15%). This frequency was comparable with the level of Y- or X-disomic cells, and also with autosomal monosomies, precluding from considering the X-nullosomic cells as hybridization artifacts. During lymphocyte cultivation, a statistically significant increase in the total frequency of Y- or X-nullosomic cells was observed already after the first cell division cycle. Thus, interphase FISH analysis is a sufficiently sensitive method enabling detection of higher, compared to the autosomes, loss of sex chromosomes in the process of cell division, a phenomenon observed during replicative cell aging, as well as during natural aging of the organism. Male cells with the de novo lost singular X chromosome, probably, switch to apoptosis and do not survive during further life of a cell population. The frequency of total aneuploidy in human somatic cells with the correction for the resolution capacity of the interphase FISH analysis constituted 5.62 and 6.90% for uncultured and cultivated cells, respectively. This aneuploidy level is close to that in spermatozoa. The data obtained can serve as the basis for the examination of the aneugenic (aneuploidy-inducing) genotoxic effects and for the analysis of interindividual genetic instability.  相似文献   

17.
The frequency of spontaneous aneuploidy of the four autosomes and both sex chromosomes in the interphase nuclei of cultured and noncultured lymphocytes from clinically healthy men was examined by use of two-color fluorescent in situ hybridization (FISH). It was shown that in noncultured cells from the individuals examined autosomal nullisomies were practically not detected (the frequency 0 to 0.01%). At the same time, the frequency of such cells with either Y, or X nullisomy was at least an order of magnitude higher (about 0.15%). This frequency was comparable with the level of Y- or X-disomic cells, and also with autosomal monosomies, precluding from consideration of X-nullisomic cells as hybridization artifact. During lymphocyte cultivation, a statistically significant increase in the total frequency of Y- or X-nullisomic cells was observed already after the first cell division cycle. Thus, interphase FISH analysis is a sufficiently sensitive method enabling detection of higher, compared to the autosomes, loss of sex chromosomes in the process of cell division, a phenomenon observed during replicative cell aging, as well as during natural aging of the organism. Male cells with the de novo lost single X chromosome, probably, switch to apoptosis and do not survive during further life of a cell population. The frequency of total aneuploidy in human somatic cells with the correction for the resolution capacity of the interphase FISH analysis was estimated to be 5.62 and 6.90% for noncultured and cultured cells, respectively. This aneuploidy level is close to that in spermatozoa. The data obtained can serve as the basis for the examination of the aneugenic (aneuploidy-inducing) genotoxic effects and for the analysis of interindividual genetic instability.  相似文献   

18.
Both sporadic and familial Alzheimer''s disease (AD) patients exhibit increased chromosome aneuploidy, particularly trisomy 21, in neurons and other cells. Significantly, trisomy 21/Down syndrome patients develop early onset AD pathology. We investigated the mechanism underlying mosaic chromosome aneuploidy in AD and report that FAD mutations in the Alzheimer Amyloid Precursor Protein gene, APP, induce chromosome mis-segregation and aneuploidy in transgenic mice and in transfected cells. Furthermore, adding synthetic Aβ peptide, the pathogenic product of APP, to cultured cells causes rapid and robust chromosome mis-segregation leading to aneuploid, including trisomy 21, daughters, which is prevented by LiCl addition or Ca2+ chelation and is replicated in tau KO cells, implicating GSK-3β, calpain, and Tau-dependent microtubule transport in the aneugenic activity of Aβ. Furthermore, APP KO cells are resistant to the aneugenic activity of Aβ, as they have been shown previously to be resistant to Aβ-induced tau phosphorylation and cell toxicity. These results indicate that Aβ-induced microtubule dysfunction leads to aneuploid neurons and may thereby contribute to the pathogenesis of AD.  相似文献   

19.
20.
The co-occurrence of two numerical chromosomal abnormalities in same individual (double aneuploidy) is relatively rare and the clinical presentations are variable depending on the predominating aneuploidy or a combination effect of both. Furthermore, double aneuploidy involving both autosomal and sex chromosomes is seldom described. We describe a male patient with typical clinical features of Down Syndrome and his karyotype revealed 48,XXY,+21. The phenotypic characteristics of this child have been discussed in the light of the published reports on double aneuploidies of XXY and trisomy 21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号