首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This aim of this review is to describe the dynamics of learning-induced cellular modifications in the rat piriform (olfactory) cortex after olfactory discrimination learning and to describe their functional significance to long-term memory consolidation. The first change to occur is in the intrinsic properties of the neurons. One day after learning, pyramidal neurons show enhanced neuronal excitability. This enhancement results from reduction in calcium-dependent conductance that mediates the post burst after-hyperpolarization. Such enhanced excitability lasts for 3 days and is followed by a series of synaptic modifications. Several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons in the piriform cortex accompany olfactory learning. Enhanced synaptic release is indicated by reduced paired-pulse facilitation. Post-synaptic enhancement of synaptic transmission is indicated by reduced rise time of post-synaptic potentials and formation of new synaptic connections is indicated by increased spine density along dendrites of these neurons. Such modifications last for up to 5 days. Thus, olfactory discrimination rule learning is accompanied by a series of cellular modifications which occur and then disappear at different times. These modifications overlap partially, allowing the maintenance of the cortical system in a ‘learning mode’ in which memories for specific odors can be acquired rapidly and efficiently.  相似文献   

2.
多巴胺是脑内重要的信息传递物质,不仅可以作为递质释放到前额叶、伏隔核等脑区,直接进行信息传递,也可以作为调质调节其它突触递质的传递,并影响神经元可塑性。海马参与构成边缘系统,受多巴胺能神经支配,执行着有关学习记忆以及空间定位的功能。海马神经元的可塑性是学习记忆的细胞分子基础。研究表明,多巴胺对海马神经元的突触可塑性和兴奋性可塑性都具有重要的调节作用。本文扼要综述多巴胺对海马神经元突触可塑性和兴奋性可塑性的调节机制的研究进展,以期为DA系统参与海马区学习记忆功能的研究提供新思路,更深入地了解学习记忆的神经机制。  相似文献   

3.
The activity-dependent strengthening of neural transmission at individual synapses has long been postulated to underlie learning and memory in the brain, and current wisdom strongly suggests that molecular modifications within both the pre- and post-synaptic nerve terminals contribute to this strengthening process (i.e. long-term potentiation or LTP). At excitatory, glutamatergic synapses, the dynamic insertion and retrieval of ionotropic glutamate receptors into and from the post-synaptic plasma membrane have been implicated in synaptic plasticity, however, the site(s) for these trafficking events and the molecules involved have not be clearly elucidated. Biochemical studies have identified SNARE proteins as critical mediators of membrane fusion events in many cell types, including neurons, and several bacterial toxins are known to interfere with neurotransmission by disrupting the function of membrane-bound SNARE proteins, such as VAMP and syntaxin. Using high resolution imaging techniques, the authors have characterized the molecular processes underlying activity-driven membrane fusion events within dendritic spines, tiny membrane protrusions only 1-2 microns in size. Their data demonstrate that syntaxin 4 functions as a key SNARE protein for the exocytic insertion of glutamate receptors and the membrane trafficking events contributing to synaptic plasticity.  相似文献   

4.
Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of?target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.  相似文献   

5.
The same empiric event may appear as different facts for authors adhering to different theories. The present work was designed with analyze learning and memory from the viewpoint of systemic approach and to compare this view with the traditional one. Neuron's activity is considered not as a response to synaptic inflow that ensures the conduction of excitation but as means of changing the relation with environment, "action" that helps eliminate the discrepancy between cell's needs and its microenvironment. It is suggested that learning and memory consolidation is based not on a consistent increase in efficacy of synaptic transmission in neuronal chains but on systemogenesis--establishment of new systemic specializations of neurons not necessarily linked directly through synapses. The article discusses the role of systemogenetic processes taking place in normal as well as in pathological state: selection, reconsolidational modifications of previously formed memory store, genes activation, neurogenesis and apoptosis. The systemic understanding of the phenomenon of long-term potentiation is-substantiated. Finally, the scheme is suggested describing variants and stages of memory store formation.  相似文献   

6.
The year 2009 marks the tenth anniversary of the founding of Institute of Neuroscience (ION) in the Shanghai campus of Chinese Academy of Sciences.  相似文献   

7.
8.
BACKGROUND: Advancing age is typically accompanied by deficits in learning and memory. These deficits occur independently of overt pathology and are often considered to be a part of "normal aging." At the neuronal level, normal aging is known to be associated with numerous cellular and molecular changes, which include a pronounced decrease in neuronal excitability and an altered induction in the threshold for synaptic plasticity. Because both of these mechanisms (neuronal excitability and synaptic plasticity) have been implicated as putative cellular substrates for learning and memory, it is reasonable to propose that age-related changes in these mechanisms may contribute to the general cognitive decline that occurs during aging. RESULTS: To further investigate the relationship between aging, learning and memory, neuronal excitability, and synaptic plasticity, we have carried out experiments with aged mice that lack the auxiliary potassium channel subunit Kvbeta1.1. In aged mice, the deletion of the auxiliary potassium channel subunit Kvbeta1.1 resulted in increased neuronal excitability, as measured by a decrease in the post-burst afterhyperpolarization. In addition, long-term potentiation (LTP) was more readily induced in aged Kvbeta1.1 knockout mice. Finally, the aged Kvbeta1.1 mutants outperformed age-matched controls in the hidden-platform version of the Morris water maze. Interestingly, the enhancements in excitability and learning were both sensitive to genetic background: The enhanced learning was only observed in a genetic background in which the mutants exhibited increased neuronal excitability. CONCLUSIONS: Neuronal excitability is an important determinant of both synaptic plasticity and learning in aged subjects.  相似文献   

9.
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.  相似文献   

10.
A 3-neuron central pattern generator, whose sufficiency and necessity has been directly demonstrated, mediates aerial respiratory behaviour in the pond snail, Lymnaea stagnalis. This behaviour can be operantly conditioned, and this associative learning is consolidated into long-lasting memory. Depending on the operant conditioning training procedure used the learning can be consolidated into intermediate term (ITM) or long-term memory (LTM). ITM persists for only 2-3 h, whilst LTM persists for days to weeks. LTM is dependent on both altered gene activity and new protein synthesis while ITM is only dependent on new protein synthesis. We have now directly established that one of the 3-CPG neurons, RPeD1, is a site of LTM formation and storage. We did this by ablating the soma of RPeD1 and leaving behind a functional primary neurite capable of mediating the necessary synaptic interactions to drive aerial respiratory behaviour by the 3-neuron CPG. However, following soma ablation the neuronal circuit is only capable of mediating learning and ITM. LTM can no longer be demonstrated. However, if RPeD1's soma is ablated after LTM consolidation memory is still present. Thus the soma is not needed for the retention of LTM. Using a similar strategy it may be possible to block forgetting.  相似文献   

11.
In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.  相似文献   

12.
The influence of antibodies against total S100 protein fraction (AB-S100) and S100b protein (AB-S100b) on the activity of LP11 and RP11 neurons were studied in naive snails and during the nociceptive sensitization. Application of AB-S100 or AB-S100b (0.1 mg/ml) initiated membrane depolarization, increase in its excitability, and depression of neural responses to sensory stimulation in nonsensitized snails. The sensitization produced facilitation of neural transmission and increase in membrane excitability. Exposure to AB-S100 or AB-S100b (0.1 mg/ml) during sensitization substantially reduced its effects on neural transmission and membrane excitability. The difference between the extent of synaptic facilitation in neurons of sensitized snails and neurons of snails sensitized under conditions of AB-S100 or AB-S100b application was comparable with synaptic depression in neurons of naive snails produced by the isolated application of AB-S100 or AB-S100b. Application of AB-S100 of AB-S100b in the dose of 0.01 mg/ml did not change the parameters of neural activity. The obtained evidence suggest that S100 proteins (in particular, S100b) in L-RP11 neurons are involved in the mechanisms of membrane excitability, regulation of membrane potential and synaptic transmission in naive snails and in the mechanisms of membrane plasticity in the neurons during development of nociceptive sensitization.  相似文献   

13.
BACKGROUND: Changes in synaptic efficacy are believed to mediate the processes of learning and memory formation. Accumulating evidence implicates cell adhesion molecules in activity-dependent synaptic modifications associated with long-term potentiation (LTP); however, there is no precedence for the selective role of this molecule class in long-term depression (LTD). The mechanisms that modulate these processes still remain unclear. RESULTS: We report a novel role for glycosylphosphatidyl inositol (GPI)-anchored contactin in hippocampal CA1 synaptic plasticity. Contactin selectively supports paired-pulse facilitation (PPF) and NMDA (N-methyl-D-aspartate) receptor-dependent LTD but is not required for synaptic morphology, basal transmission, or LTP. Molecular analyses indicate that contactin is essential for the membrane and synaptic targeting of the contactin-associated protein (Caspr/paranodin) and for the proper distribution of a presumptive ligand, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan. CONCLUSIONS: These results indicate that contactin plays a selective role in synaptic plasticity and identify PPF and LTD, but not LTP, as contactin-dependent processes. Engagement of the contactin-Caspr complex with RPTPbeta may thus regulate cell-cell interactions contributing to specific synaptic plasticity forms.  相似文献   

14.
Models for temporary information storage in neuronal populations are dominated by mechanisms directly dependent on synaptic plasticity. There are nevertheless other mechanisms available that are well suited for creating short-term memories. Here we present a model for working memory which relies on the modulation of the intrinsic excitability properties of neurons, instead of synaptic plasticity, to retain novel information for periods of seconds to minutes. We show that it is possible to effectively use this mechanism to store the serial order in a sequence of patterns of activity. For this we introduce a functional class of neurons, named gate interneurons, which can store information in their membrane dynamics and can literally act as gates routing the flow of activations in the principal neurons population. The presented model exhibits properties which are in close agreement with experimental results in working memory. Namely, the recall process plays an important role in stabilizing and prolonging the memory trace. This means that the stored information is correctly maintained as long as it is being used. Moreover, the working memory model is adequate for storing completely new information, in time windows compatible with the notion of “one-shot” learning (hundreds of milliseconds).  相似文献   

15.
The importance of long-term synaptic plasticity as a cellular substrate for learning and memory is well established. By contrast, little is known about how learning and memory are regulated by voltage-gated ion channels that integrate synaptic information. We investigated this question using mice with general or forebrain-restricted knockout of the HCN1 gene, which we find encodes a major component of the hyperpolarization-activated inward current (Ih) and is an important determinant of dendritic integration in hippocampal CA1 pyramidal cells. Deletion of HCN1 from forebrain neurons enhances hippocampal-dependent learning and memory, augments the power of theta oscillations, and enhances long-term potentiation (LTP) at the direct perforant path input to the distal dendrites of CA1 pyramidal neurons, but has little effect on LTP at the more proximal Schaffer collateral inputs. We suggest that HCN1 channels constrain learning and memory by regulating dendritic integration of distal synaptic inputs to pyramidal cells.  相似文献   

16.
Previous studies have shown the inhibitory effect of the in vitro application of copper sulfate on hippocampal long-term potentiation. While in vivo administration of copper did not affect spatial learning and memory. To find possible answers to this controversial issue, we evaluate the effect of different doses of copper sulfate on in vivo long-term potentiation, synaptic transmission, and paired-pulse behavior of CA1 pyramidal cells. Thirty-two male Wistar rats were divided into four groups: control, 5, 10, and 15 mg of copper sulfate. Field excitatory postsynaptic potential from the stratum radiatum of CA1 neurons was recorded following Schaffer collateral stimulation in rats. Spike amplitude, long-term potentiation and paired-pulse index were measured in all groups. The results of this study showed that 5 mg/kg copper sulfate increased synaptic transmission and inhibited long-term potentiation and decreased the hippocampal paired-pulse ratio, while 10 and 15 mg/kg copper sulfate did not affect CA1 synaptic transmission properties. Low, but not high, doses of copper sulfate affect synaptic plasticity. This finding may explain the difference between the effect of copper on synaptic plasticity and spatial learning and memory.  相似文献   

17.
Although synaptic plasticity is widely regarded as the primary mechanism of memory [1], forms of nonsynaptic plasticity, such as increased somal or dendritic excitability or membrane potential depolarization, also have been implicated in learning in both vertebrate and invertebrate experimental systems [2], [3], [4], [5], [6] and [7]. Compared to synaptic plasticity, however, there is much less information available on the mechanisms of specific types of nonsynaptic plasticity involved in well-defined examples of behavioral memory. Recently, we have shown that learning-induced somal depolarization of an identified modulatory cell type (the cerebral giant cells, CGCs) of the snail Lymnaea stagnalis encodes information that enables the expression of long-term associative memory [8]. The Lymnaea CGCs therefore provide a highly suitable experimental system for investigating the ionic mechanisms of nonsynaptic plasticity that can be linked to behavioral learning. Based on a combined behavioral, electrophysiological, immunohistochemical, and computer simulation approach, here we show that an increase of a persistent sodium current of this neuron underlies its delayed and persistent depolarization after behavioral single-trial classical conditioning. Our findings provide new insights into how learning-induced membrane level changes are translated into a form of long-lasting neuronal plasticity already known to contribute to maintained adaptive modifications at the network and behavioral level [8].  相似文献   

18.
Recent studies using functional optical imaging have revealed that cellular memory traces form in different areas of the insect brain after olfactory classical conditioning. These traces are revealed as increased calcium signals or synaptic release from defined neurons, and include a short-lived trace that forms immediately after conditioning in antennal lobe projection neurons, an early trace in dopaminergic neurons, and a medium-term trace in dorsal paired medial neurons. New molecular genetic tools have revealed that for normal behavioral memory performance, synaptic transmission from the mushroom body neurons is required only during retrieval, whereas synaptic transmission from dopaminergic neurons is required at the time of acquisition and synaptic transmission from dorsal paired medial neurons is required during the consolidation period. Such experimental results are helping to identify the types of neurons that participate in olfactory learning and when their participation is required. Olfactory learning often occurs alongside crossmodal interactions of sensory information from other modalities. Recent studies have revealed complex interactions between the olfactory and the visual senses that can occur during olfactory learning, including the facilitation of learning about subthreshold olfactory stimuli due to training with concurrent visual stimuli.  相似文献   

19.
In the present study we will try to single out several principles of the nervous system functioning essential for describing mechanisms of learning and memory basing on our own experimental investigation of cellular mechanisms of memory in the nervous system of gastropod molluscs and literature data: main changes in functioning due to learning occur in effectivity of synaptic inputs and in the intrinsic properties of postsynaptic neurons; due to learning some synaptic inputs of neurons selectively change its effectivity due to pre- and postsynaptic changes, but the induction of plasticity always starts in postsynapse, maintaining of long-term memory in postsynapse is also shown; reinforcement is not related to activity of the neural chain receptor-sensory neuron-interneuron-motoneuron-effector; reinforcement is mediated via activity of modulatory neurons, and in some cases can be exerted by a single neuron; activity of modulatory neurons is necessary for development of plastic modifications of behavior (including associative), but is not needed for recall of conditioned responses. At the same time, the modulatory neurons (in fact they constitute a neural reinforcement system) are necessary for recall of context associative memory; changes due to learning occur at least in two independent loci in the nervous system. A possibility for erasure of memory with participation of nitroxide is experimentally and theoretically based.  相似文献   

20.
In the present study, we will try to single out several principles of the nervous system functioning essential for describing the mechanisms of learning and memory, basing on our own experimental investigation of cellular mechanisms of memory in the nervous system of gastropod molluscs and literature data as follows: (1) Main changes in functioning due to learning occur in the interneurons; (2) Due to learning some synaptic inputs of command neurons selectively change its effectivity; (3) Reinforcement is not related to activity of the neural chain receptor-sensory neuron-interneuron-motoneuron-effector; reinforcement is mediated via activity of modulatory neurons, and in some cases can be exerted by a single neuron; (4) Activity of modulatory neurons is necessary for development of plastic modifications of behaviour (including associative), but is not needed for recall of conditioned responses. At the same time, the modulatory neurons (in fact they constitute a neural reinforcement system) are necessary for recall of context associative memory; (5) Changes due to learning occur at least in two independent loci in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号