首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ArcAB two-component system of Escherichia coli regulates the aerobic/anaerobic expression of genes that encode respiratory proteins whose synthesis is coordinated during aerobic/anaerobic cell growth. A genomic study of E. coli was undertaken to identify other potential targets of oxygen and ArcA regulation. A group of 175 genes generated from this study and our previous study on oxygen regulation (Salmon, K., Hung, S. P., Mekjian, K., Baldi, P., Hatfield, G. W., and Gunsalus, R. P. (2003) J. Biol. Chem. 278, 29837-29855), called our gold standard gene set, have p values <0.00013 and a posterior probability of differential expression value of 0.99. These 175 genes clustered into eight expression patterns and represent genes involved in a large number of cell processes, including small molecule biosynthesis, macromolecular synthesis, and aerobic/anaerobic respiration and fermentation. In addition, 119 of these 175 genes were also identified in our previous study of the fnr allele. A MEME/weight matrix method was used to identify a new putative ArcA-binding site for all genes of the E. coli genome. 16 new sites were identified upstream of genes in our gold standard set. The strict statistical analyses that we have performed on our data allow us to predict that 1139 genes in the E. coli genome are regulated either directly or indirectly by the ArcA protein with a 99% confidence level.  相似文献   

3.
4.
The ability of cAMP to inhibit isoleucyl-tRNA synthetase (IRS) formation has been demonstrated in wild type K-12 Escherichia coli and two adenyl-cyclase (cya) mutants. cAMP appeared not to have any effect on either the valyl- or arginyl-tRNA synthetase (VRS and ARS respectively). Addition of cAMP led to a reduction in rate of IRS synthesis but not VRS or ARS. Furthermore, derepression of IRS and VRS by isoleucine limitation was completely prevented by cAMP.Abbreviations IRS isoleucyl-tRNA synthetase - VRS valyl-tRNA synthetase - ARS arginyl-tRNA synthetase - cAMP cyclic adenosine-3,5-monophosphate - Cya adenyl cyclase Gene - CRP cAMP receptor protein - O.D. optical density  相似文献   

5.
6.
7.
8.
Abstract Five different c -type cytochromes have been detected during anaerobic growth of various Escherichia coli strains in different media. None of these cytochromes was detectable in aerobically-grown cultures. Only a single, 43 kDa cytochrome was synthesized in response to the presence of trimethylamine-N-oxide: synthesis of this cytochrome was unaffected by the presence of nitrate or nitrite, was repressed by oxygen, but was dependent upon a funtional tor operon located at minute 22 (coordinate 1070 kb) on the E. coli chromosome. The other four cytochromes, masses 16, 18, 24 and 50 kDa, were induced by nitrite coordinately with formate-dependent nitrite reductase activity, but repressed by oxygen and nitrate. As only the 18 kDa and 50 kDa cytochromes are encoded by the nrf operon located at minute 92 (coordinate 4366 kb), there must be other loci, possibly essential for formate-dependent nitrite reduction, encoding the 16 kDa and 24 kDa cytochromes. No other c -type cytochrome was detected under any growth condition tested.  相似文献   

9.
Washed cells of Peptostreptococcus products (strain Marburg), which were incubated in the presence of CO/CO2/N2 (50%/17%/33%; 200 kPa) catalyzed the synthesis of acetate from carbon monoxide. The rate of acetate formation from CO was stimulated more than threefold by the addition of sodium (10 mM); potassium did not effect acetate synthesis. The degree of stimulation was dependent on the sodium concentration; the dependence followed simple Michaelis-Menten kinetics. The apparent Km for sodium was determined to be about 2 mmol/l. Sodium also stimulated acetate synthesis from H2 plus CO2. In the absence of added sodium the formation of formate as an intermediate in methyl group synthesis was stimulated. It is suggested that the sodium dependent reaction(s) is one (or more) of the reactions involved in methyl group synthesis from CO2.  相似文献   

10.
The Escherichia coli arcA gene product regulates chromosomal gene expression in response to deprivation of oxygen (Arc function; Arc stands for aerobic respiration control) and is required for expression of the F plasmid DNA transfer (tra) genes (Sfr function; Sfr stands for sex factor regulation). Using appropriate lacZ fusions, we have examined the relationship between these two genetic regulatory functions. Arc function in vivo was measured by anaerobic repression of a chromosomal sdh-lacZ operon fusion (sdh stands for succinate dehydrogenase). Sfr function was measured by activation of a plasmid traY-lacZ gene fusion. An eight-codon insertion near the 5' terminus of arcA, designated arcA1, abolished Arc function, as previously reported by S. Iuchi and E.C.C. Lin (Proc. Natl. Acad. Sci. USA 85:1888-1892, 1988), but left Sfr function largely (greater than or equal to 60%) intact. Similarly, the arcB1 mutation, which depressed sdh expression and is thought to act by abolishing the signal input that elicits ArcA function, had little effect (less than or equal to 20%) on the Sfr function of the arcA+ gene product. Conversely, a valine-to-methionine mutation at codon 203 (the sfrA5 allele) essentially abolished Sfr activity without detectably altering Arc activity. These data indicate that Sfr and Arc functions are separately expressed and regulated properties of the same protein.  相似文献   

11.
Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. The adaptive responses are coordinated by a group of global regulators, which include the one-component Fnr protein, and the two-component Arc system. To quantitate the contribution of Arc and Fnr-dependent regulation in catabolism, arcA and fnr mutant strains were constructed using the recently developed lambda derived recombination system. The metabolic activity of wildtype E. coli, an arcA mutant, an fnr mutant, and a double arcA-fnr mutant, via the fermentative pathways in glucose-limited cultures and different oxygen concentrations was studied in chemostat cultures at steady state. It was found that the most significant role of ArcA is under microaerobic conditions, while that of FNR is under more strictly anaerobic conditions. The FNR protein is normally inactive during microaerobic conditions. However, our results indicate that in the arcA mutant strain the cells behave as if a higher level of the FNR regulator is in the activated form compared to the wildtype strain during the transition from aerobic to microanaerobic growth. The results show a significant increase in the flux through pyruvate formate lyase (PFL) in the presence of oxygen. The activity of FNR-regulated pathways in the arcA mutant strain is correlated with the high redox potential obtained under microaerobic growth.  相似文献   

12.
13.
Cadmium is a widespread pollutant that has been associated with oxidative stress, but the mechanism behind this effect in prokaryotes is still unclear. In this work, we exposed two glutathione deficient mutants (ΔgshA and ΔgshB) and one respiration deficient mutant (ΔubiE) to a sublethal concentration of cadmium. The glutathione mutants show a similar increase in reactive oxygen species as the wild type. Experiments performed using the ΔubiE strain showed that this mutant is more resistant to cadmium ions and that Cd-induced reactive oxygen species levels were not altered. In the light of these facts, we conclude that the interference of cadmium with the respiratory chain is the cause of the oxidative stress induced by this metal and that, contrary to previously proposed models, the reactive oxygen species increase is not due to glutathione depletion, although this peptide is crucial for cadmium detoxification.  相似文献   

14.
15.
16.
17.
The Escherichia coli K-12 sheA gene encodes a pore-forming hemolysin that is secreted to the medium by a hitherto unidentified mechanism. To study SheA secretion, we constructed fusions between SheA and the mature form of the periplasmic enzyme beta-lactamase, and performed site-directed mutagenesis on these constructs. The SheA-Bla and Bla-SheA hybrid proteins displayed hemolytic activity and were efficiently exported to the extracellular medium. Our results with mutant hybrid proteins show that secretion of SheA is independent of its cytolytic activity, that secretion is paralleled by a transient leakage of periplasmic contents to the extracellular medium, and that deletion of the 11 C-terminal residues of SheA has no effect on its secretion and cytolytic activity.  相似文献   

18.
We have investigated the capacity of a well-defined Escherichia coli fimB strain, AAEC350 (a derivative of MG1655), to express type 1 fimbriae under various growth conditions. The expression of type 1 fimbriae is phase-variable due to the inversion of a 314-bp DNA segment. Two tyrosine recombinases, FimB and FimE, mediate the inversion of the phase switch. FimB can carry out recombination in both directions, whereas the current evidence suggests that FimE-catalyzed switching is on-to-off only. We show here that AAEC350 is in fact capable of off-to-on phase switching and type 1 fimbrial expression under aerobic static growth conditions. The phase switching is mediated by FimE, and allows emerging fimbriate AAEC350 to outgrow their non-fimbriate counterparts by pellicle formation. Following inversion of the phase switch, this element can remain phase-locked in the on orientation due to integration of insertion sequence elements, viz. IS1 or IS5, at various positions in either the fimE gene or the phase switch.  相似文献   

19.
20.
Studies on membrane protein folding have focused on monomeric α-helical proteins and a major challenge is to extend this work to larger oligomeric membrane proteins. Here, we study the Escherichia coli (E. coli) ATP-binding cassette (ABC) transporter that imports vitamin B(12) (the BtuCD protein) and use it as a model system for investigating the folding and assembly of a tetrameric membrane protein complex. Our work takes advantage of the modular organization of BtuCD, which consists of two transmembrane protein subunits, BtuC, and two cytoplasmically located nucleotide-binding protein subunits, BtuD. We show that the BtuCD transporter can be re-assembled from both prefolded and partly unfolded, urea denatured BtuC and BtuD subunits. The in vitro re-assembly leads to a BtuCD complex with the correct, native, BtuC and BtuD subunit stoichiometry. The highest rates of ATP hydrolysis were achieved for BtuCD re-assembled from partly unfolded subunits. This supports the idea of cooperative folding and assembly of the constituent protein subunits of the BtuCD transporter. BtuCD folding also provides an opportunity to investigate how a protein that contains both membrane-bound and aqueous subunits coordinates the folding requirements of the hydrophobic and hydrophilic subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号