首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown by scanning microcalorimetry and densitometry that the partial specific heat and the partial specific volume of pFh fragments of two myeloma IgG3 increase during breakdown of the tertiary structure, while the secondary structure—left-handed poly-L-proline II double helix—does not change. This effect may be explained by a high degree of hydration, which increases upon globule decompactization because of enhanced solvent accessibility of the peptide groups of the helix.  相似文献   

2.
《Molekuliarnaia biologiia》2005,39(3):488-496
After complexation of DNA with enzymes a specific adaptation of DNA structure including its partial or nearly complet melting, change of sugar-phosphate backbone structure, stretching, compression, bending or kinking, flipping out of nucleotides from the DNA helix, etc. take place. The full set of such changes is specific for each individual enzyme and is a very important for effective adjustment of reacting orbitals of enzyme and specific DNA atoms with accuracy up to 10-15 degrees. Efficiency of DNA sequence adaptation in the direction providing by enzyme depends on many specific structural characteristics of DNA. Maximal adjustment of DNA structure can be achieved only for specific sequences, therefore on going from nonspecific to specific DNAs the increase of the catalytic rate by 4-8 orders of magnitude takes place. DNA topoisomerase I is a sequence-dependent enzyme, but it can cleave with lower efficiency DNA sequences, which are significantly different from an optimal one. We have carried out the computer analysis of structural characteristics of many DNA sequences utilizing by topoisomerase using the method which is based on the analysis of conformational and physico-chemical characteristics of DNA helix and gives a detailed information about similarities or differences of DNA structural units. In addition to such characteristics as base tilt angle, shift of base pair, helix steering angle, and helix step for all cleaved sequences the presence of sterically disadvantageous contacts in small grove between N3 and NH2 of guanines and N3 of adenines were detected which corresponds to the presence Py-Pu dinucleotides in the cleavaged site. In addition, for optimal sequences bending of DNA helix toward major groove is characterized. The proposed method seems to be a very perspective for the analysis of an efficiency of nucleic acids cleavage by different DNA- and RNA-dependent enzymes.  相似文献   

3.
Stabilization of secondary structure elements by specific combinations of hydrophobic and hydrophilic amino acids has been studied by the way of analysis of pentapeptide fragments from twelve partial bacterial proteomes. PDB files describing structures of proteins from species with extremely high and low genomic GC-content, as well as with average G + C were included in the study. Amino acid residues in 78,009 pentapeptides from alpha helices, beta strands and coil regions were classified into hydrophobic and hydrophilic ones. The common propensity scale for 32 possible combinations of hydrophobic and hydrophilic amino acid residues in pentapeptide has been created: specific pentapeptides for helix, sheet and coil were described. The usage of pentapeptides preferably forming alpha helices is decreasing in alpha helices of partial bacterial proteomes with the increase of the average genomic GC-content in first and second codon positions. The usage of pentapeptides preferably forming beta strands is increasing in coil regions and in helices of partial bacterial proteomes with the growth of the average genomic GC-content in first and second codon positions. Due to these circumstances the probability of coil-sheet and helix-sheet transitions should be increased in proteins encoded by GC-rich genes making them prone to form amyloid in certain conditions. Possible causes of the described fact that importance of alpha helix and coil stabilization by specific combinations of hydrophobic and hydrophilic amino acids is growing with the decrease of genomic GC-content have been discussed.  相似文献   

4.
Little is known about the structural properties of semi-denatured membrane proteins. The current study employs laser-induced oxidative labeling of methionine side chains in combination with electrospray mass spectrometry and optical spectroscopy for gaining insights into the conformation of bacteriorhodopsin (BR) under partially denaturing conditions. The native protein shows extensive oxidation at M32, M68, and M163, which are located in solvent-accessible loops. In contrast, M20 (helix A), M56/60 (helix B), M118 (helix D), M145 (helix E), and M209 (helix G) are strongly protected, consistent with the known protein structure. Exposure of the protein to acidic conditions leads to a labeling pattern very similar to that of the native state. The absence of large-scale conformational changes at low pH is in agreement with recent crystallography data. Solubilization of BR in SDS induces loss of the retinal chromophore concomitant with collapse of the binding pocket, thereby precluding solvent access to the protein interior. Tryptophan fluorescence data confirm the presence of a large protein core that remains protected from water. However, oxidative labeling indicates partial unfolding of helices A and D in SDS. Irreversible thermal denaturation of the protein at 100 °C induces a labeling pattern quite similar to that seen upon SDS exposure. Labeling experiments on refolded bacterioopsin reveal a native-like structure, but with partial unfolding of helix D. Our data suggest that noncovalent contacts with the retinal chromophore in native BR play an important role for the stability of this particular helix. Overall, the present work illustrates the viability of using laser-induced oxidative labeling as a novel tool for characterizing structural changes of membrane proteins in response to alterations of their solvent environment.  相似文献   

5.
The HlyA secretion signal sequence of approximately 46 residues is predicted to contain helix I and an amphipathic helix II separated by a short loop including the conserved Phe residue, F-989. All nine substitutions of Phe-989 drastically reduce secretion of HlyA. Directed mutagenesis identified a functional hot spot, EISK, in helix II. However, genetic analysis did not provide strong support for a functional helix II; rather, the results emphasized that individual residues, for example, E-978 and F-989, are essential irrespective of a specific secondary structure.  相似文献   

6.
Thomas A  Milon A  Brasseur R 《Proteins》2004,56(1):102-109
Using a semiempirical quantum mechanical procedure (FCPAC) we have calculated the partial atomic charges of amino acids from 494 high-resolution protein structures. To analyze the influence of the protein's environment, we considered each residue under two conditions: either as the center of a tripeptide with PDB structure geometry (free) or as the center of 13-16 amino acid clusters extracted from the PDB structure (buried). The partial atomic charges from residues in helices and in sheets were separated. The FCPAC partial atomic charges of the Cbeta and Calpha of most residues correlate with their helix propensity, positively for Cbeta and negatively for Calpha (r2 = 0.76 and 0.6, respectively). The main consequence of burying residues in proteins is the polarization of the backbone C=O bond, which is more pronounced in helices than in sheets. The average shift of the oxygen partial charges that results from burying is -0.120 in helix and -0.084 in sheet with the charge of the proton as unit. Linear correlations are found between the average NMR chemical shifts and the average FCPAC partial charges of Calpha (r2 = 0.8-0.85), N (r3 = 0.67-0.72), and Cbeta (r2 = 0.62) atoms. Correlations for helix and beta-sheet FCPAC partial charges show parallel regressions, suggesting that the charge variations due to burying in proteins differentiate between the dihedral angle effects and the polarization of backbone atoms.  相似文献   

7.
A novel alternative conformation, which involves an interaction between the 5' terminal and 915 regions (E. coli numbering), is proposed after a screening of compiled sequences of small subunit ribosomal RNAs. This conformation contains a pseudoknot helix between residues 12-16 and 911-915, and its formation requires the partial melting of the 5' terminal helix and the disruption of the 17-19/916-918 pseudoknot helix of the classical 16 S rRNA secondary structure. The alternate pseudoknot helix is proximal to the binding site of streptomycin and various mutations in rRNA which confer resistance to streptomycin have been located in each strand of the proposed helix. It is suggested that the presence of streptomycin favours the shift towards the alternate conformation, thereby stabilizing drug binding. Mutations which destabilize the novel pseudoknot helix would restrict the response to streptomycin.  相似文献   

8.
The species diversity of the phylum Rotifera has been largely studied on the basis of morphological characters. However, cladistic relationships within this group are poorly resolved due to extensive homoplasy in morphological traits, substantial phenotypic plasticity and a poor fossil record. We undertook this study to determine if a phylogeny based on partial 18S rDNA, which included the helix E23 of 18S rDNA sequence, was concordant with established taxonomic relationships within the order Ploimida (class: Monogononta). We also estimated the level of polymorphism within clones and populations of Ploimida 'species'. Finally, we included the Cycliophora Symbion pandora as outgroup and the variable helix E23 region to examine the influence of their signal on the evolutionary relationships among Acanthocephala, Bdelloidea and Ploimida. Phylogenetic reconstruction was performed using maximum parsimony, neighbour joining and maximum likelihood methods. We found 1) that morphologically similar Ploimida 'species' show vastly different 18S E23 rDNA sequences; 2) inclusion of the helix E23 of 18S rDNA and its secondary structure analysis results in better resolution of family level relationships within the Ploimida; 3) an impact of Symbion pandora as an outgroup with inclusion of the helix E23 on the relationships between the Rotifera and the Acanthocephala; and 4) partial incongruence and differential substitution rate between conserved region and helix E23 region of the 18S rDNA gene depending on the taxomic group studied.  相似文献   

9.
Folding of polytopic transmembrane proteins involves interactions of individual transmembrane helices, and multiple TM helix–helix interactions need to be controlled and aligned to result in the final TM protein structure. While defined interaction motifs, such as the GxxxG motif, might be critically involved in transmembrane helix–helix interactions, the sequence context as well as lipid bilayer properties significantly modulate the strength of a sequence specific transmembrane helix–helix interaction. Structures of 11 transmembrane helix dimers have been described today, and the influence of the sequence context as well as of the detergent and lipid environment on a sequence specific dimerization is discussed in light of the available structural information. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

10.
11.
We present evidence for structures of two ordered forms of polyxanthylic acid based on ir spectroscopy, pH titrations, and thermal transitions. Over the pH range ~6–9.5, the structure is a four-stranded helix with alkali metal ions specifically complexed in the central channel. These internal counterions stabilize the structure by complexing with carbonyl oxygens and by partial screening of electrostatic repulsion caused by ionization of the xanthine residues in this pH range. Below pH 5, the structure is quite different and much more stable. Our data are consistent with a six-stranded helix in which both carbonyl oxygens and both NH protons are hydrogen bonded.  相似文献   

12.
The high-resolution structure of ovine placental lactogen (oPL) and ovine prolactin (oPRL), not yet established in detail, was probed by limited proteolysis with the Glu-specific protease from Staphylococcus aureus V8. While in hGH there were no cleavage sites inside of any of the four alpha-helices, the analysis of the fragments obtained after partial proteolysis of oPL showed a site of cleavage at the putative third helix, suggesting that this helix is partially unwound at this point. The partial proteolysis of the rest of the molecule was compatible with a similar folding pattern for oPL, hGH and pGH, on the basis of the crystal structure of these last hormones. In the case of oPRL, proteolytic cleavage occurred at Glu residues which would be located at the end of the first helix and the beginning of the second in the hGH folding model, suggesting that these helices are shorter in oPRL than in hGH. In order to gain further insight on the folding of these molecules, circular dichroism and intrinsic fluorescence measurements were used to examine the effect of denaturing conditions on oPL and oPRL. After exposure to 6 M guanidine the unfolding of both proteins was completely reversed upon elimination of the denaturing agent. In contrast, exposure to pH 3.0 caused an irreversible decrease in the alpha-helical content in both hormones, most striking for oPL, indicating that this hormone is less stable than oPRL or hGH.  相似文献   

13.
We report here the NMR structure and backbone dynamics of an exchangeable apolipoprotein, apoLp-III, from the insect Locusta migratoria. The NMR structure adopts an up-and-down elongated five-helix bundle, which is similar to the x-ray crystal structure of this protein. A short helix, helix 4', is observed that is perpendicular to the bundle and fully solvent-exposed. NMR experimental parameters confirm the existence of this short helix, which is proposed to serve as a recognition helix for apoLp-III binding to lipoprotein surfaces. The L. migratoria apoLp-III helix bundle displays several characteristic structural features that regulate the reversible lipoprotein binding activity of apoLp-III. The buried hydrophilic residues and exposed hydrophobic residues readily adjust the marginal stability of apoLp-III, facilitating the helix bundle opening. Specifically, upon lipoprotein binding the locations and orientations of the buried hydrophilic residues modulate the apoLp-III helix bundle to adopt a possible opening at the hinge that is opposite the recognition short helix, helix 4'. The backbone dynamics provide additional support to the recognition role of helix 4' and this preferred conformational adaptation of apoLp-III upon lipid binding. In this case, the lipid-bound open conformation contains two lobes linked by hinge loops. One lobe contains helices 2 and 3, and the other lobe contains helices 1, 4, and 5. This preferred bundle opening is different from the original proposal on the basis of the x-ray crystal structure of this protein (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesenberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 603-608), but it efficiently uses helix 4' as the recognition short helix. The buried interhelical H-bonds are found to be mainly located between the two lobes, potentially providing a specific driving force for the helix bundle recovery of apoLp-III from the lipid-bound open conformation. Finally, we compare the NMR structures of Manduca sexta apoLp-III and L. migratoria apoLp-III and present a united scheme for the structural basis of the reversible lipoprotein binding activity of apoLp-III.  相似文献   

14.
pFh fragments from the hinge region of human IgG3 Kuc and Sur can fold into compact form, resulting the formation of proteins with secondary (super-secondary) structure, which is represented almost exclusively double poly-L-proline helix. It was demonstrated by several methods that the thermal denaturation of compact form pFh fragment (hinge region) IgG3 Kuc and Sur occurs in two stages. The "two-state" model described the disintegration of the compact structure with preservation of the secondary structure (double poly-L-proline helix). In the second stage melts itself helix consisting of four cooperative units, which are formed by the sections with a high content of proline residues. Poliproline conformation of secondary structure and large number of disulfide bonds is responsible for high specific enthalpy of denaturation and high thermal stability.  相似文献   

15.
The 2.0 A crystal structure of the N6-adenine DNA methyltransferase M.TaqI in complex with specific DNA and a nonreactive cofactor analog reveals a previously unrecognized stabilization of the extrahelical target base. To catalyze the transfer of the methyl group from the cofactor S-adenosyl-l-methionine to the 6-amino group of adenine within the double-stranded DNA sequence 5'-TCGA-3', the target nucleoside is rotated out of the DNA helix. Stabilization of the extrahelical conformation is achieved by DNA compression perpendicular to the DNA helix axis at the target base pair position and relocation of the partner base thymine in an interstrand pi-stacked position, where it would sterically overlap with an innerhelical target adenine. The extrahelical target adenine is specifically recognized in the active site, and the 6-amino group of adenine donates two hydrogen bonds to Asn 105 and Pro 106, which both belong to the conserved catalytic motif IV of N6-adenine DNA methyltransferases. These hydrogen bonds appear to increase the partial negative charge of the N6 atom of adenine and activate it for direct nucleophilic attack on the methyl group of the cofactor.  相似文献   

16.
As the principal component of high-density lipoprotein (HDL), apolipoprotein (apo) A-I plays essential roles in lipid transport and metabolism. Because of its intrinsic conformational plasticity and flexibility, the molecular details of the tertiary structure of lipid-free apoA-I have not been fully elucidated. Previously, we demonstrated that the stability of the N-terminal helix bundle structure is modulated by proline substitution at the most hydrophobic region (residues around Y18) in the N-terminal domain. Here we examine the effect of proline substitution at S55 located in another relatively hydrophobic region compared to most of the helix bundle domain to elucidate the influences on the helix bundle structure and lipid interaction. Fluorescence measurements revealed that the S55P mutation had a modest effect on the stability of the bundle structure, indicating that residues around S55 are not pivotally involved in the helix bundle formation, in contrast to the insertion of proline at position 18. Although truncation of the C-terminal domain (Δ190-243) diminishes the lipid binding of apoA-I molecule, the mutation S55P in addition to the C-terminal truncation (S55P/Δ190-243) restored the lipid binding, suggesting that the S55P mutation causes a partial unfolding of the helix bundle to facilitate lipid binding. Furthermore, additional proline substitution at Y18 (Y18P/S55P/Δ190-243), which leads to a drastic unfolding of the helix bundle structure, yielded a greater lipid binding ability. Thus, proline substitutions in the N-terminal domain of apoA-I that destabilized the helix bundle promoted lipid solubilization. These results suggest that not only the hydrophobic C-terminal helical domain but also the stability of the N-terminal helix bundle in apoA-I are important modulators of the spontaneous solubilization of membrane lipids by apoA-I, a process that leads to the generation of nascent HDL particles.  相似文献   

17.
G Némethy  H A Scheraga 《Biopolymers》1989,28(9):1573-1584
Interactions with water make an important contribution to the free energy of stabilization of the collagen triple helix, but they do not alter the structure of the triple helix, i.e., the packing geometry of the three strands. Conformational energy computations have been carried out on poly(tripeptide) analogues of collagen, with the introduction of a newly developed form of a hydration shell model to compute the free energy of hydration. The most stable triple helix formed by poly(Gly-Pro-Pro), obtained earlier from conformational energy computations [M. H. Miller & H. A. Scheraga (1976) J. Polym. Sci. Polym. Symp. 54, 171], with a structure that is very closely similar to the observed structure, is strongly favored over other three-strand complexes, both in the absence and the presence of hydration. The hydration shell model does not provide an explanation for the increased stability of the poly(Gly-Pro-Hyp) triple helix as compared to poly(Gly-Pro-Pro). It appears that the difference should be attributed to specific binding of water, and effect that is not yet included in the present version of the hydration shell model. On the other hand, this model accounts for the observed enthalpy of unfolding of a poly(Gly-Pro-Pro) triple helix to isolated single chains in solution in terms of intramolecular noncovalent interactions and the free energy of hydration.  相似文献   

18.
The helical packing in sperm whale myoglobin has been examined. Using cylindrical co-ordinates based on each helix axis in turn, the overlap of the side-chain atoms of a helix with the surrounding atoms from other parts of the structure was 2.3 Å, but the distribution was not at all uniform and severe overlap occurred in at least one location for each helix. Simple axial translations or rotations of any helix in the native structure are not permitted motions. Translation perpendicular to the helix axis in at least one direction is not restricted by interlocking side-chains.The approach of two helices along the contact normal connecting their axes produces solvent exclusion effects at a distance of about 6 Å from the final position. The solvent-excluded area found in such interaction sites is equivalent to a large hydrophobic contribution to the free energy of association. The six principal sites correspond by themselves to 40% of the total area change in going from the extended sausage model to the native structure. The mean atom-packing densities for these sites and the standard deviations of these values are similar and are equal to that found for the protein as a whole.Helices of close-packed spheres form useful approximations to actual peptide helices. The helix of index number four corresponds closely to an α-helix. The required sphere size corresponds in volume to residues such as leucine or methionine. The predicted packing scheme for such helices corresponds to the three general classes of interactions actually seen.Making use of the geometry implied by the close-packed sphere helix, an algorithm is proposed for picking potentially strong helix-helix interaction sites in peptide chains of known sequence. When combined with preliminary secondary structure predictions, it is suggested that this algorithm might usefully restrict the search for these specific types of contact in the docking portion of a general folding program.  相似文献   

19.
Histones were completely dissociated from their native complex with DNA in 2.0m-sodium chloride. Histone fractions IIb, V and I were dissociated in 1.2m-sodium chloride, fractions V and I in 0.7m-sodium chloride and fraction I in 0.45m-sodium chloride. Repeated extraction of partial dRNP (deoxyribonucleoprotein) preparations with sodium chloride of the same concentration as that from which they were prepared resulted in release of histones that previously had remained associated with the DNA of the complex. Gradual removal of histones from dRNP was paralleled by an improvement in solubility, a decrease in wavelength of the u.v.-absorption minimum, and a fall in sedimentation coefficient of the remaining partial dRNP. X-ray diffraction patterns of partial dRNP preparations showed that removal of histone fractions I and V from dRNP did not destroy the super-coil structure of the dRNP, but further removal of histones did. Infrared spectra of partial dRNP preparations showed that in native dRNP histone fraction I was present in the form of extended, isolated polypeptide chains, and that the other histone fractions probably contain a helical component that lies roughly parallel to the polynucleotide chains in the double helix and an extended polypeptide component that is more nearly parallel to the DNA helix axis. An analysis of the sedimentation of partial dRNP preparations on sucrose gradients showed that native dRNP consists of DNA molecules each complexed with histone fractions of all types.  相似文献   

20.
Scalley ML  Nauli S  Gladwin ST  Baker D 《Biochemistry》1999,38(48):15927-15935
We use a broad array of biophysical methods to probe the extent of structure and time scale of structural transitions in the protein L denatured state ensemble. Measurement of amide proton exchange protection during the first several milliseconds following initiation of refolding in 0.4 M sodium sulfate revealed weak protection in the first beta-hairpin and helix. A tryptophan residue was introduced into the first beta-hairpin to probe the extent of structure formation in this part of the protein; the intrinsic fluorescence of this tryptophan was found to deviate from that expected given its local sequence context in 2-3 M guanidine, suggesting some partial ordering of this region in the unfolded state ensemble. To further probe this partial ordering, dansyl groups were introduced via cysteine residues at three sites in the protein. It was found that fluorescence energy transfer from the introduced tryptophan to the dansyl groups decreased dramatically upon unfolding. Stopped-flow fluorescence studies showed that the recovery of dansyl fluorescence upon refolding occurred on a submillisecond time scale. To probe the interactions responsible for the residual structure observed in the denatured state ensemble, the conformation of a peptide corresponding to the first beta-hairpin and helix of protein L was studied using circular dichroism spectroscopy and compared to that of full-length protein L and previously characterized peptides corresponding to the isolated helix and second beta-hairpin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号