首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caco-2 cells are derived from a human colonic adenocarcinoma, but differentiate into small intestinal-like cells after confluence. While this enterocytic differentiation has been well studied, the presumed parallel loss of colonocyte function has not been as thoroughly examined. To follow the phenotype for both tissues, Western blots were performed using antisera recognizing liver/bone/kidney alkaline phosphatase and surfactant-like particle proteins found in normal human colon, along with antisera against the small bowel representatives of the same proteins. Antisera against proteins enriched in either enterocytes (α1-antitrypsin) or colonocytes (surfactant protein A) were also evaluated. Alkaline phosphatase activity increased from 3 to 18 days post-confluence. Activity at 3 days post-confluence derived substantially from both isomers. Thereafter, the colonic (liver/bone/kidney) isomer declined to low levels as the content of the enterocytic isomer rose. A similar pattern was found with colonic (decreasing expression) and enterocytic (increasing expression) surfactant-like particle proteins. In particular, the content of larger enterocytic particle proteins (97 and 116 kDa) increased with time in culture. Expression of α1-antitrypsin increased early and remained high, whereas surfactant protein A generally declined after the third day post-confluency. In summary, undifferentiated Caco-2 cells express very low levels of proteins characteristic of either colonocytes or enterocytes. Immediately after confluence, they expressed proteins characteristic of both cell types. Thereafter, the content of colonocyte-specific proteins decreased, whereas those specific for the enterocyte increased. The timing and degree of this phenotypic switch have implications for the interpretation of experiments using Caco-2 cells as a model of small intestinal function. J. Cell. Physiol. 174:362–369, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
《FEBS letters》2014,588(24):4645-4653
  相似文献   

5.
6.
7.
8.
9.
10.
Hepatocyte growth factor (HGF) and its receptor, c-Met, are involved in cell transformation. To study their role in intestinal cell differentiation, we used Caco-2 colon cancer cells, which differentiate spontaneously into enterocytes during culture. Cells grown continuously in the presence of HGF reached confluence more quickly than control cells. Markers of enterocytic differentiation, such as alkaline phosphatase and sucrase-isomaltase activities, adhesion molecules, and structural proteins such as E-cadherin, villin, and F-actin were upregulated by HGF throughout the 35 days of culture, and actin fibers were reorganized. HGF also stimulated expression and tyrosine phosphorylation of c-Met and Gab-1 as well as protein kinase C (PKC)-alpha expression. PKC-alpha has been shown to be involved in intestinal differentiation. We therefore investigated the possibility that increases in PKC-alpha protein levels were responsible for the HGF-promoted events. We did this by incubating cells with G?-6976, an inhibitor of PKC-alpha and -beta1, concomitantly with HGF. This inhibitor abolished the HGF-induced increase in villin levels before, but not after, confluence. Thus HGF accelerates Caco-2 cell differentiation and stimulates the metabolic and structural events accompanying this process. These HGF-promoted events may be mediated partly by Gab-1, and the effects of HGF on villin before confluence seem to involve PKC.  相似文献   

11.
In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4alpha and gamma. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4alpha repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4alpha and gamma functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3) is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3) or silencing RNA for Slfn3 (siSlfn3) was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI), Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号