首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.  相似文献   

3.

Background

The presence of chloroplast-related DNA sequences in the nuclear genome is generally regarded as a relic of the process by which genes have been transferred from the chloroplast to the nucleus. The remaining chloroplast encoded genes are not identical across the plant kingdom indicating an ongoing transfer of genes from the organelle to the nucleus.

Scope

This review focuses on the active processes by which the nuclear genome might be acquiring or removing DNA sequences from the chloroplast genome. Present knowledge of the contribution to the nuclear genome of DNA originating from the chloroplast will be reviewed. In particular, the possible effects of stressful environments on the transfer of genetic material between the chloroplast and nucleus will be considered. The significance of this research and suggestions for the future research directions to identify drivers, such as stress, of the nuclear incorporation of plastid sequences are discussed.

Conclusions

The transfer to the nuclear genome of most of the protein-encoding functions for chloroplast-located proteins facilitates the control of gene expression. The continual transfer of fragments, including complete functional genes, from the chloroplast to the nucleus has been observed. However, the mechanisms by which the loss of functions and physical DNA elimination from the chloroplast genome following the transfer of those functions to the nucleus remains obscure. The frequency of polymorphism across chloroplast-related DNA fragments within a species will indicate the rate at which these DNA fragments are incorporated and removed from the chromosomes.Key words: Stress, DNA transfer, organelles and nucleus, genome integration  相似文献   

4.
烟草质体多顺反子定点整合表达载体的构建和转化   总被引:1,自引:0,他引:1  
构建了烟草质体多顺反子定点整合表达载体pLM4(-psaA-Prrn-RBS-man-RBS-gfp-RBS-aadA-psbA3'-psbC-).用基因枪将该载体轰击烟草叶片5次,用添加了壮观霉素的选择分化培养基筛选,获得质体转基因烟草6株.用PCR、激光扫描、Western blot和RFLP等方法检测都证实多顺反子表达盒中的3个基因甘露聚糖酶基因(man)、绿荧光蛋白基因(gfp)、氨基糖苷3'-腺苷酰基转移酶基因(aadA)已整合到烟草质体基因组中,且均得到表达.  相似文献   

5.
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.  相似文献   

6.
Most chloroplast and mitochondrial proteins are encoded by nuclear genes that once resided in the organellar genomes. Transfer of most of these genes appears to have occurred soon after the endosymbiotic origin of organelles, and so little is known about the process. Our efforts to understand how chloroplast genes are functionally transferred to the nuclear genome have led us to discover the most recent evolutionary gene transfer yet described. The gene rpl22, encoding chloroplast ribosomal protein CL22, is present in the chloroplast genome of all plants examined except legumes, while a functional copy of rpl22 is located in the nucleus of the legume pea. The nuclear rpl22 gene has acquired two additional domains relative to its chloroplast ancestor: an exon encoding a putative N-terminal transit peptide, followed by an intron which separates this first exon from the evolutionarily conserved, chloroplast-derived portion of the gene. This gene structure suggests that the transferred region may have acquired its transit peptide by a form of exon shuffling. Surprisingly, phylogenetic analysis shows that rpl22 was transferred to the nucleus in a common ancestor of all flowering plants, at least 100 million years preceding its loss from the legume chloroplast lineage.  相似文献   

7.
Dinoflagellate chloroplast genes are unique in that each gene is on a separate minicircular chromosome. To understand the origin and evolution of this exceptional genomic organization we completely sequenced chloroplast psbA and 23S rRNA gene minicircles from four dinoflagellates: three closely related Heterocapsa species (H. pygmaea, H. rotundata, and H. niei) and the very distantly related Amphidinium carterae. We also completely sequenced a Protoceratium reticulatum minicircle with a 23S rRNA gene of novel structure. Comparison of these minicircles with those previously sequenced from H. triquetra and A. operculatum shows that in addition to the single gene all have noncoding regions of approximately a kilobase, which are likely to include a replication origin, promoter, and perhaps segregation sequences. The noncoding regions always have a high potential for folding into hairpins and loops. In all six dinoflagellate strains for which multiple minicircles are fully sequenced, parts of the noncoding regions, designated cores, are almost identical between the psbA and 23S rRNA minicircles, but the remainder is very different. There are two, three, or four cores per circle, sometimes highly related in sequence, but no sequence identity is detectable between cores of different species, even within one genus. This contrast between very high core conservation within a species, but none among species, indicates that cores are diverging relatively rapidly in a concerted manner. This is the first well-established case of concerted evolution of noncoding regions on numerous separate chromosomes. It differs from concerted evolution among tandemly repeated spacers between rRNA genes, and that of inverted repeats in plant chloroplast genomes, in involving only the noncoding DNA cores. We present two models for the origin of chloroplast gene minicircles in dinoflagellates from a typical ancestral multigenic chloroplast genome. Both involve substantial genomic reduction and gene transfer to the nucleus. One assumes differential gene deletion within a multicopy population of the resulting oligogenic circles. The other postulates active transposition of putative replicon origins and formation of minicircles by homologous recombination between them.  相似文献   

8.
Ueda M  Fujimoto M  Arimura S  Murata J  Tsutsumi N  Kadowaki K 《Gene》2007,402(1-2):51-56
Gene transfer events from organelle genomes (mitochondria and chloroplasts in plants) to the nuclear genome are important processes in the evolution of the eukaryotic cell. It is highly likely that the gene transfer event is still an ongoing process in higher plant mitochondria and chloroplasts. The number and order of genes encoded in the chloroplast genome of higher plants are highly conserved. Recently, several exceptional cases of gene loss from the chloroplast genome have been discovered as the number of complete chloroplast genome sequences has increased. The Populus chloroplast genome has lost the rpl32 gene, while the corresponding the chloroplast rpl32 (cp rpl32) gene has been identified in the nuclear genome. Nuclear genes transferred from the chloroplast genome need to gain a sequence that encodes a transit peptide. Here, we revealed that the nuclear cp rpl32 gene has acquired the exon sequence, which is highly homologous to a transit peptide derived from the chloroplast Cu-Zn superoxide dismutase (cp sod-1) gene. The cp rpl32 gene has acquired the sequence that encodes not only for the transit peptide, but also for the conserved N-terminal portion of the mature SOD protein from the cp sod-1 gene, suggesting the occurrence of DNA sequence duplication. Unlike cp SOD-1, cp RPL32 did not show biased localization in the chloroplasts. This difference may be caused by mutations accumulated in the sequence of the SOD domain on the cp rpl32 gene. We provide new insight into the fate of the inherent sequence derived from a transit peptide.  相似文献   

9.
DNA sequence variations of chalcone synthase (Chs) and Apetala3 gene promoters from 22 cruciferous plant species were analyzed to identify putative conserved regulatory elements. Our comparative approach confirmed the existence of numerous conserved sequences which may act as regulatory elements in both investigated promoters. To confirm the correct identification of a well-conserved UV-light-responsive promoter region, a subset of Chs promoter fragments were tested in Arabidopsis thaliana protoplasts. All promoters displayed similar light responsivenesses, indicating the general functional relevance of the conserved regulatory element. In addition to known regulatory elements, other highly conserved regions were detected which are likely to be of functional importance. Phylogenetic trees based on DNA sequences from both promoters (gene trees) were compared with the hypothesized phylogenetic relationships (species trees) of these taxa. The data derived from both promoter sequences were congruent with the phylogenies obtained from coding regions of other nuclear genes and from chloroplast DNA sequences. This indicates that promoter sequence evolution generally is reflective of species phylogeny. Our study also demonstrates the great value of comparative genomics and phylogenetics as a basis for functional analysis of promoter action and gene regulation.  相似文献   

10.
We used DNA sequencing and gel blot surveys to assess the integrity of the chloroplast gene infA, which codes for translation initiation factor 1, in >300 diverse angiosperms. Whereas most angiosperms appear to contain an intact chloroplast infA gene, the gene has repeatedly become defunct in approximately 24 separate lineages of angiosperms, including almost all rosid species. In four species in which chloroplast infA is defunct, transferred and expressed copies of the gene were found in the nucleus, complete with putative chloroplast transit peptide sequences. The transit peptide sequences of the nuclear infA genes from soybean and Arabidopsis were shown to be functional by their ability to target green fluorescent protein to chloroplasts in vivo. Phylogenetic analysis of infA sequences and assessment of transit peptide homology indicate that the four nuclear infA genes are probably derived from four independent gene transfers from chloroplast to nuclear DNA during angiosperm evolution. Considering this and the many separate losses of infA from chloroplast DNA, the gene has probably been transferred many more times, making infA by far the most mobile chloroplast gene known in plants.  相似文献   

11.
During evolution, the genomes of eukaryotic cells have undergone major restructuring to meet the new regulatory challenges associated with compartmentalization of the genetic material in the nucleus and the organelles acquired by endosymbiosis (mitochondria and plastids). Restructuring involved the loss of dispensable or redundant genes and the massive translocation of genes from the ancestral organelles to the nucleus. Genomics and bioinformatic data suggest that the process of DNA transfer from organelles to the nucleus still continues, providing raw material for evolutionary tinkering in the nuclear genome. Recent reconstruction of these events in the laboratory has provided a unique tool to observe genome evolution in real time and to study the molecular mechanisms by which plastid genes are converted into functional nuclear genes. Here, we summarize current knowledge about plastid-to-nuclear gene transfer in the context of genome evolution and discuss new insights gained from experiments that recapitulate endosymbiotic gene transfer in the laboratory.  相似文献   

12.
S Chao  R Sederoff    C S Levings  rd 《Nucleic acids research》1984,12(16):6629-6644
The nucleotide sequence of the gene coding for the 18S ribosomal RNA of maize mitochondria has been determined and a model for the secondary structure is proposed. Dot matrix analysis has been used to compare the extent and distribution of sequence similarities of the entire maize mitochondrial 18S rRNA sequence with that of 15 other small subunit rRNA sequences. The mitochondrial gene shows great similarity to the eubacterial sequences and to the maize chloroplast, and less similarity to mitochondrial rRNA genes in animals and fungi. We propose that this similarity is due to a slow rate of nucleotide divergence in plant mtDNA compared to the mtDNA of animals. Sequence comparisons indicate that the evolution of the maize mitochondrial 18S, chloroplast 16S and nuclear 17S ribosomal genes have been essentially independent, in spite of evidence for DNA transfer between organelles and the nucleus.  相似文献   

13.
14.
Chloroplast genetic engineering is an environmentally friendly approach, where the foreign integrated gene is often expressed at a higher level than nuclear transformation. The cry1Ab gene was successfully transferred into the cabbage chloroplast genome in this study. The aadA and cry1Ab genes were inserted into the pASCC201 vector and driven by the prrn promoter. The cabbage-specific plastid vectors were transferred into the chloroplasts of cabbage via particle gun mediated transformation. Regenerated plantlets were selected by their resistance to spectinomycin and streptomycin. According to antibiotic selection, the regeneration percentage of the two cabbage cultivars was 4-5%. The results of PCR, Southern, Northern hybridization and western analyses indicated that the aadA and cry1Ab genes were not only successfully integrated into the chloroplast genome, but functionally expressed at the mRNA and protein level. Expression of Cry1Ab protein was detected in the range of 4.8-11.1% of total soluble protein in transgenic mature leaves of the two species. Insecticidal effects on Plutella xylostella were also demonstrated in cry1Ab transformed cabbage. The objectives of this study were to establish a gene transformation system for Brassica chloroplasts, and to study the possibility for insect-resistance in dicot vegetables using chloroplast gene transformation.  相似文献   

15.
16.
17.
从玉米幼嫩叶片中提取玉米叶绿体基因DNA,通过PCR克隆出叶绿体同源重组片段trnA和trnI、叶绿体特异性启动子Prrn以及终止子psbA.构建玉米叶绿体表达载体pBAIRTARED,含有一个人工操纵子,其中,筛选标记基因aadA和红色荧光蛋白报告基因AsRED处于Prrn启动子和psbA终止子控制.将构建的载体转化大肠杆菌BL21(DE3),观测到重组细胞呈现红色,表明构建的载体可以用于玉米叶绿体转化以及表达报告基因.  相似文献   

18.
ARF(AUXIN RESPONSE FACTOR)基因含有一个B3功能域和具有转录激活或抑制活性的中心功能域,在植物发育过程中起到非常重要的作用。本研究采用生物信息学方法,根据拟南芥ARF基因序列鉴定了普通烟草基因组中的ARF基因,并对家族成员进行了序列特征、系统发生、亚细胞定位和表达模式分析。目前在普通烟草基因组中共得到50个ARF基因成员,其基因结构相对复杂,一般含有10个外显子。亚细胞定位结果表明,少数ARF蛋白定位到线粒体或叶绿体,大多数未检测到定位信号。转录组数据分析表明,ARF基因具有不同的组织表达模式,部分基因表现出组织特异性。这些研究结果为普通烟草ARF基因家族功能的深入研究奠定了基础。  相似文献   

19.
Summary A 3.4-kbp nuclear (n) DNA sequence has greater than 99% sequence homology to three segments of the chloroplast (cp) genes rps2, psbD/C, and psaA respectively. Each of these cpDNA segments is less than 3 kbp in length and appears to be integrated, at least in part, into several (>5) different sites flanked by unique sequences in the nuclear genome. Some of these sites contain longer homologies to the particular genes, while others are only homologous to smaller parts of the cp genes. Both the cpDNA fragments found in the nuclear genome and their flanking nDNA sequences are invested with short repeated A-T rich sequences but, apart from a hexanucleotide sequence and a palindromic sequence identified near each recombination point, there is no obvious structure that can suggest a mechanism of DNA transfer from the chloroplast to the nucleus in spinach.  相似文献   

20.
Removal of antibiotic resistance genes from transgenic tobacco plastids   总被引:24,自引:0,他引:24  
Iamtham S  Day A 《Nature biotechnology》2000,18(11):1172-1176
Removal of antibiotic resistance genes from genetically modified (GM) crops removes the risk of their transfer to the environment or gut microbes. Integration of foreign genes into plastid DNA enhances containment in crops that inherit their plastids maternally. Efficient plastid transformation requires the aadA marker gene, which confers resistance to the antibiotics spectinomycin and streptomycin. We have exploited plastid DNA recombination and cytoplasmic sorting to remove aadA from transplastomic tobacco plants. A 4.9 kbp insert, composed of aadA flanked by bar and uidA genes, was integrated into plastid DNA and selected to remove wild-type plastid genomes. The bar gene confers tolerance to the herbicide glufosinate despite being GC-rich. Excision of aadA and uidA mediated by two 174 bp direct repeats generated aadA-free T(0) transplastomic plants containing the bar gene. Removal of aadA and bar by three 418 bp direct repeats allowed the isolation of marker-free T(2) plants containing a plastid-located uidA reporter gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号