首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(4):450-453
Several neurodegenerative diseases share a common neuropathology, primarily featuring the presence of abnormal protein inclusions in the brain containing specific misfolded proteins. Strategies to decrease the load of protein aggregates and oligomers are considered relevant targets for therapeutic intervention. Many studies indicate that macroautophagy is a selective and efficient mechanism for the degradation of misfolded mutant proteins related to neurodegeneration, without affecting the levels of the corresponding wild-type form. In fact, activation of autophagy by rapamycin treatment decreases the accumulation of protein aggregates and alleviates disease features in animal models of Huntington disease and other disorders affecting the nervous system. Recent evidence, however, indicates that the expression of several disease-related genes may actually impair autophagy activity at different levels, including omegasome formation, substrate recognition, lysosomal acidity and autophagosome membrane nucleation. A recent report from Zhang and co-workers indicates that treatment of an amyotrophic lateral sclerosis (ALS) mouse model with rapamycin actually exacerbates neuronal loss and disease progression, associated with enhanced apoptosis. This study reflects the need for a better understanding of the contribution of autophagy to ALS and other neurodegenerative diseases since this pathway may not only operate as a cleaning-up mechanism. Then, autophagy impairment may be part of the pathological mechanisms underlying the disease, whereas augmenting autophagy levels above a certain threshold could lead to detrimental effects in neuronal function and survival. Combinatorial strategies to repair the autophagy deficit and also enhance the activation of the pathway may result in a beneficial impact to decrease the content of protein aggregates and damaged organelles, improving neuronal function and survival.  相似文献   

2.
《Autophagy》2013,9(8):1279-1280
In recent years, tremendous progress has been made toward unveiling the mechanism of autophagy and its exploitation by many different cancer types. This year the American Association for the Advancement of Science held a one day Symposium on Autophagy: An Emerging Therapeutic Target in Human Disease in Vancouver, British Columbia and brought together experts in cell biology, drug discovery, and clinical translation to share their research findings and prospects. Currently, autophagy is being investigated on several fronts, from modulation of gene expression to in vivo studies, and more recently clinical trials in cancer. Key topics of discussion were determining which stage of autophagy would be the ideal target for inhibition to produce the highest impact, and which cancers or cancer subtypes would be the most sensitive to autophagy inhibitors; the answers to these questions may be a turning point in cancer therapy research.  相似文献   

3.
In recent years, the role of autophagy in the pathogenesis of most neurodegenerative diseases has transitioned into a limbo of protective or detrimental effects. Genetic evidence indicates that mutations in autophagy-regulatory genes can result in the occurrence of amyotrophic lateral sclerosis (ALS), suggesting a physiological role of the pathway to motoneuron function. However, experimental manipulation of autophagy in ALS models led to conflicting results depending on the intervention strategy and the disease model used. A recent work by the Maniatis group systematically explored the role of cell-specific autophagy in motoneurons at different disease stages, revealing surprising and unexpected findings. Autophagy activity at early stages may contribute to maintaining the structure and function of neuromuscular junctions, whereas at later steps of the disease it has a pathogenic activity possibly involving cell-nonautonomous mechanisms related to glial activation. This new study adds a new layer of complexity in the field, suggesting an intricate interplay between proteostasis alterations, the time-differential function of autophagy in neurons, and muscle innervation in ALS.  相似文献   

4.
5.
《Autophagy》2013,9(4):709-710
Autophagy is a lysosomal degradation pathway for bulk cytosolic proteins and damaged organelles, and is well known to act as a cell survival mechanism. Acetaminophen (APAP) overdose can cause liver injury in animals and humans by inducing necrosis due to mitochondrial damage. We recently found that pharmacological induction of autophagy by rapamycin protects against, whereas pharmacological suppression of autophagy by chloroquine exacerbates, APAP-induced liver injury in mice. Autophagy is induced to remove APAP-induced damaged mitochondria and thus attenuates APAP-induced hepatocyte necrosis. To our surprise, we found that liver-specific Atg5 knockout mice are not more susceptible, but are resistant to APAP-induced liver injury due to compensatory effects. Our work suggests that pharmacological modulation of autophagy is a novel therapeutic approach to ameliorate APAP-induced liver injury. Moreover, our work also suggests that caution needs to be exercised when using genetic autophagy gene knockout mice for pathophysiological studies.  相似文献   

6.
Ni HM  Jaeschke H  Ding WX 《Autophagy》2012,8(4):709-710
Autophagy is a lysosomal degradation pathway for bulk cytosolic proteins and damaged organelles, and is well known to act as a cell survival mechanism. Acetaminophen (APAP) overdose can cause liver injury in animals and humans by inducing necrosis due to mitochondrial damage. We recently found that pharmacological induction of autophagy by rapamycin protects against, whereas pharmacological suppression of autophagy by chloroquine exacerbates, APAP-induced liver injury in mice. Autophagy is induced to remove APAP-induced damaged mitochondria and thus attenuates APAP-induced hepatocyte necrosis. To our surprise, we found that liver-specific Atg5 knockout mice are not more susceptible, but are resistant to APAP-induced liver injury due to compensatory effects. Our work suggests that pharmacological modulation of autophagy is a novel therapeutic approach to ameliorate APAP-induced liver injury. Moreover, our work also suggests that caution needs to be exercised when using genetic autophagy gene knockout mice for pathophysiological studies.  相似文献   

7.
8.
Daiki Takahashi 《Autophagy》2020,16(4):765-766
ABSTRACT

Targeted degradation is a promising new modality in drug discovery that makes it possible to reduce intracellular protein levels with small molecules. It is a complementary approach to the conventional protein knockdown typically used in laboratories and may offer a way to approach the currently undruggable human proteome. Recently, the first autophagy-mediated degraders, called AUTACs, were developed based on observations in a xenophagy study.  相似文献   

9.
10.
《Autophagy》2013,9(7):1060-1061
Cell death due to cerebral ischemia has been attributed to necrosis and apoptosis, but autophagic mechanisms have recently been implicated as well. Using rats exposed to neonatal focal cerebral ischemia, we have shown that lysosomal and autophagic activities are increased in ischemic neurons, and have obtained strong neuroprotection by post-ischemic inhibition of autophagy.  相似文献   

11.
12.
13.
Autophagy is an evolutionarily conserved catabolic process that plays an essential role in maintaining cellular homeostasis by degrading unneeded cell components. When exposed to hostile environments, such as hypoxia or nutrient starvation, cells hyperactivate autophagy in an effort to maintain their longevity. In densely packed solid tumors, such as glioblastoma, autophagy has been found to run rampant due to a lack of oxygen and nutrients. In recent years, targeting autophagy as a way to strengthen current glioblastoma treatment has shown promising results. However, that protective autophagy inhibition or autophagy overactivation is more beneficial, is still being debated. Protective autophagy inhibition would lower a cell’s previously activated defense mechanism, thereby increasing its sensitivity to treatment. Autophagy overactivation would cause cell death through lysosomal overactivation, thus introducing another cell death pathway in addition to apoptosis. Both methods have been proven effective in the treatment of solid tumors. This systematic review article highlights scenarios where both autophagy inhibition and activation have proven effective in combating chemoresistance and radioresistance in glioblastoma, and how autophagy may be best utilized for glioblastoma therapy in clinical settings.  相似文献   

14.
15.
Acute myocardial infarction (AMI) is one of the leading causes of morbidity worldwide. Myocardial reperfusion is known as an effective therapeutic choice against AMI. However, reperfusion of blood flow induces ischemia/reperfusion (I/R) injury through different complex processes including ion accumulation, disruption of mitochondrial membrane potential, the formation of reactive oxygen species, and so forth. One of the processes that gets activated in response to I/R injury is autophagy. Indeed, autophagy acts as a “double-edged sword” in the pathology of myocardial I/R injury and there is a controversy about autophagy being beneficial or detrimental. On the basis of the autophagy effect and regulation on myocardial I/R injury, many studies targeted it as a therapeutic strategy. In this review, we discuss the role of autophagy in I/R injury and its targeting as a therapeutic strategy.  相似文献   

16.
C9ORF72 expression is reduced in a substantial number of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which may contribute to disease pathogenesis. However, its normal molecular function remains unknown. In this issue of The EMBO Journal, Sellier et al ( 2016 ) identified a novel protein complex consisting of C9ORF72, WDR41, and SMCR8 that acts as a GDP‐GTP exchange factor (GEF) for RAB8a and RAB39b and is regulated by TBK1, whose partial loss of function also causes ALS and FTD. They further reveal a potential modulatory role for this novel complex in macroautophagy (autophagy), especially in the context of ataxin‐2 toxicity.  相似文献   

17.
18.
《Autophagy》2013,9(2):275-277
Autophagy is a catabolic process critical to maintaining cellular homeostasis and responding to cytotoxic insult. Autophagy is recognized as “programmed cell survival” in contrast to apoptosis or programmed cell death. Upregulation of autophagy has been observed in many types of cancers and has been demonstrated to both promote and inhibit antitumor drug resistance depending to a large extent on the nature and duration of the treatment-induced metabolic stress as well as the tumor type. Cisplatin, doxorubicin and methotrexate are commonly used anticancer drugs in osteosarcoma, the most common form of childhood and adolescent cancer. Our recent study demonstrated that high mobility group box 1 protein (HMGB1)-mediated autophagy is a significant contributor to drug resistance in osteosarcoma cells. Inhibition of both HMGB1 and autophagy increase the drug sensitivity of osteosarcoma cells in vivo and in vitro. Furthermore, we demonstrated that the ULK1-FIP200 complex is required for the interaction between HMGB1 and BECN1, which then promotes BECN1-PtdIns3KC3 complex formation during autophagy. Thus, these findings provide a novel mechanism of osteosarcoma resistance to therapy facilitated by HMGB1-mediated autophagy and provide a new target for the control of drug-resistant osteosarcoma patients.  相似文献   

19.
Huang J  Liu K  Yu Y  Xie M  Kang R  Vernon P  Cao L  Tang D  Ni J 《Autophagy》2012,8(2):275-277
Autophagy is a catabolic process critical to maintaining cellular homeostasis and responding to cytotoxic insult. Autophagy is recognized as "programmed cell survival" in contrast to apoptosis or programmed cell death. Upregulation of autophagy has been observed in many types of cancers and has been demonstrated to both promote and inhibit antitumor drug resistance depending to a large extent on the nature and duration of the treatment-induced metabolic stress as well as the tumor type. Cisplatin, doxorubicin and methotrexate are commonly used anticancer drugs in osteosarcoma, the most common form of childhood and adolescent cancer. Our recent study demonstrated that high mobility group box 1 protein (HMGB1)-mediated autophagy is a significant contributor to drug resistance in osteosarcoma cells. Inhibition of both HMGB1 and autophagy increase the drug sensitivity of osteosarcoma cells in vivo and in vitro. Furthermore, we demonstrated that the ULK1-FIP200 complex is required for the interaction between HMGB1 and BECN1, which then promotes BECN1-PtdIns3KC3 complex formation during autophagy. Thus, these findings provide a novel mechanism of osteosarcoma resistance to therapy facilitated by HMGB1-mediated autophagy and provide a new target for the control of drug-resistant osteosarcoma patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号