首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decrease of pH and dropping of oxidation-reduction potential have been observed during growing Lactobacillus salivarius 1588 and 3823, Lactobacillus acidophilus 101E, and Lactococcus lactis 3690 in anaerobic conditions in medium with glucose fermentation. These parameters and membrane proton permeability of bacteria ($ C_m^{H^ + } $ C_m^{H^ + } ) changed in the mediums with different pH. Oxidizer ferrycianide and reducer DL-dithiothreitol affected the bacterial growth and their changed H+ extrusion from the cells and K+ uptake by the cells in experiment conditions. Application of oxidizers and reducers are suggested for regulation of growth related with H+ ion transport in lactic acid bacteria.  相似文献   

2.
The dependence of Escherichia coli membrane H+ conductance (Gm H+) with a steady-state pH in the presence and absence of an external source of energy (glucose) was studied, when cells were grown under anaerobic and aerobic conditions, with an assay pH of 7.0. Energy-dependent H+ efflux by intact cells growing at pH of 4.5-7.5 was also measured. The elevated H+ conductance and lowered H+ flux were shown for cells growing in acidic pH and under anaerobic conditions, when bacteria were fermenting glucose. The atp mutant, which is deprived of the F0F1- adenosine triphosphatase, had less Gm H+ independent of growth conditions. In contrast with wild-type or precursor strain, a remarkable difference in Gm H+ for atp mutant was observed between aerobic and anaerobic conditions; such a difference was significant at pH 4.5. These results could indicate distinguishing pathways determining Gm H+ under anaerobic conditions after the fermentation of glucose at different pH and an input of the F0F1-adenosine triphosphatase in Gm H+. In addition, the effect of osmotic stress was demonstrated with grown cells. Gm H+ and H+ efflux both were increased after hyperosmotic stress at pH 7.5, and these changes were inhibited by N,N\'-dicyclohexylcarbodiimide, whereas these changes were lower in atp mutant. A role of the F0F1-adenosine triphosphatase in osmo-sensitivity of bacteria was confirmed under fermentative conditions.  相似文献   

3.
耐酸性是乳酸菌重要的益生菌性状之一。实验采用半定量RT-PCR法分别对在不同酸度条件下培养后的3株不同干酪乳杆菌的H -ATP酶基因mRNA表达水平进行了比较和分析。实验结果显示,随着培养基酸度增加干酪乳杆菌的生长受到抑制,特别在pH4.0条件下干酪乳杆菌的生长受到强烈的抑制;H -ATP酶基因的表达量随着培养基酸度的增加而增加。推测H -ATP酶与干酪乳杆菌耐受酸性条件是有一定的关联的。  相似文献   

4.
It was shown that the proton conductivity of Escherichia coli membranes depends on pH and other conditions of bacterial growth. It is considerably lower in cells fermenting glucose and accomplishing the nitrate-nitrite respiration compared with cells accomplishing the oxygen respiration. Proton conductivity increases substantially with decreasing pH of medium. It was found that proton conductivity is related to the redox and membrane potentials of cells. The energy-dependent flux of protons from cells and the ATPase activity of membrane vesicles considerably vary depending on whether bacteria are grown under aerobic or anaerobic conditions. The H+ flux from cells fermenting glucose (pH 7.5) was 1.7 times greater than the H+ flux from cells that accomplish the nitrate-nitrite and oxygen respiration. The N,N'-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase activity increased 2.5 times as K+ concentration increased to 100 mM (including residual K+ in potassium-free medium). The DCCD-sensitive ATPase activity considerably decreased with decreasing pH of medium, whereas the ATPase activity that was not suppressed by DCCD was stimulated. These results can be used for establishing the relationship between membrane proton conductivity and the energy-dependent H+ flux and ATPase activity.  相似文献   

5.
Measurements of the electrochemical gradient of hydrogen ions, which gives rise to the proton motive force (PMF), were carried out with growing Streptococcus lactis and Staphylococcus aureus cells. The facultative anaerobe was chosen in order to compare the PMF of cells growing aerobically and anaerobically. It was expected that during aerobic growth the cells would have a higher PMF than during anaerobic growth, because the H+-translocating ATPase (BF0F1) operates in the direction of H+ influx and ATP synthesis during respiration, whereas under anaerobic conditions the BF0F1 hydrolyzes glycolytically generated ATP and establishes the proton gradient by extruding H+. The electrical component of the PMF, delta psi, and the chemical gradient of H+, delta pH, were measured with radiolabeled tetraphenylphosphonium and benzoate ions. In both S. lactis and S. aureus cells, the PMF was constant during the exponential phase of batch growth and decreased in the stationary phase. In both species of bacteria, the exponential-phase PMF was not affected by varying the growth rate by adding different sugars to the medium. The relative contributions of delta psi and delta pH to the PMF, however, depended on the pH of the medium. The internal pH of S. aureus was constant at pH 7.4 to 7.6 under all conditions of growth tested. Under aerobic conditions, the delta psi of exponential phase S. aureus remained fairly constant at 160 to 170 mV. Thus, the PMF was 250 to 270 mV in cells growing aerobically in media at pH 6 and progressively lower in media of higher pH, reaching 195 to 205 mV at pH 7. Under anaerobic conditions, the delta psi ranged from 100 to 120 mV in cells at pH 6.3 to 7, resulting in a PMF of 150 to 140 mV. Thus, the mode of energy metabolism (i.e., respiration versus fermentation) and the pH of the medium are the two important factors influencing the PMF of these gram-positive cells during growth.  相似文献   

6.
Aerobic thermoacidophilic chemolithotrophic bacteria Sulfobacillus thermosulfidooxidans 1269T and Sulfobacillus thermosulfidooxidans subsp. asporogenes 41 were shown to be resistant to stress factors, including high concentrations of Zn2+ (0.8 M) and H+ (pH 1.2) that exceeded the optimum values. The growth and biomass gain rates decreased, but bacteria retained their functions. The activity of nearly all enzymes involved in carbon metabolism decreased. Glucose was primarily metabolized via the Entner--Doudoroff pathway. The activity tricarboxylic acid cycle enzymes decreased compared to that in cells grown under normal conditions. After saturation of the growth medium with 5 vol % CO2, sulfobacteria utilized glucose by the Embden-Meyerhof and pentose phosphate pathways under mixotrophic conditions.  相似文献   

7.
In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.  相似文献   

8.
The effect of acidification of the fermented broth at the end of the culture was examined on the growth and the cryotolerance of Lactobacillus bulgaricus CFL1, as a new means to better preserve lactic acid bacteria. Cryotolerance was investigated by evaluating the loss of specific acidification activity during freezing and frozen storage. An experimental design made it possible to determine optimal acidification conditions that improved cryotolerance, such as pH 5.15 for 30min. These conditions were also conducive to high biomass productivity. By considering the type of acid used, H(2)SO(4) enabled us to obtain cells with better cryotolerance, as compared to HCl. It was also observed that increasing the pH after acidification slightly minimised the acid shock, thus improving cryotolerance. Moreover, it was concluded that this improvement was related to a physiological adaptation of L. bulgaricus CFL1 during the 30-min acidification at pH 5.15.  相似文献   

9.
During the industrial stabilization process, lactic acid bacteria are subjected to several stressful conditions. Tolerance to dehydration differs among lactic acid bacteria and the determining factors remain largely unknown. Lactobacillus coryniformis Si3 prevents spoilage by mold due to production of acids and specific antifungal compounds. This strain could be added as a biopreservative in feed systems, e.g. silage. We studied the survival of Lb. coryniformis Si3 after freeze-drying in a 10% skim milk and 5% sucrose formulation following different fermentation pH values and temperatures. Initially, a response surface methodology was employed to optimize final cell density and growth rate. At optimal pH and temperature (pH 5.5 and 34 °C), the freeze-drying survival of Lb. coryniformis Si3 was 67% (±6%). The influence of temperature or pH stress in late logarithmic phase was dependent upon the nature of the stress applied. Heat stress (42 °C) did not influence freeze-drying survival, whereas mild cold- (26 °C), base- (pH 6.5), and acid- (pH 4.5) stress significantly reduced survival. Freeze-drying survival rates varied fourfold, with the lowest survival following mild cold stress (26 °C) prior to freeze-drying and the highest survival after optimal growth or after mild heat (42 °C) stress. Levels of different membrane fatty acids were analyzed to determine the adaptive response in this strain. Fatty acids changed with altered fermentation conditions and the degree of membrane lipid saturation decreased when the cells were subjected to stress. This study shows the importance of selecting appropriate fermentation conditions to maximize freeze-drying viability of Lb. coryniformis as well as the effects of various unfavorable conditions during growth on freeze-drying survival.  相似文献   

10.
The N,N'-dicyclohexylcarbodiimide sensitive exchange of 2H+ of a cell for K+ of medium stable to pH, K+ activity and temperature changes has been discovered in anaerobically grown gram-negative Escherichia coli, Salmonella typhimurium. S. enteritidis, Proteus mirabilis, P. vulgaris, anaerobic gram-positive bacteria Streptococcus faecalis, Lactobacillus salivarius, L. lactis in the presence of exogenic energy source. This exchange in gram-negative bacteria is operating only at increase of medium osmolarity. The high K+ distribution between cell and medium has been reached during the exchange of 2H+ for one K+ and the corresponding potassium equilibrium potential is much more than the measured delta psi. In aerobically grown E. coli, S. typhimurium, Brevibacterium flavum and aerobic Micrococcus luteus exchange of 2H+ for K+ does not take place, the K+ distribution is lower and in good conformity with the measured delta psi. It is assumed that exchange of 2H+ for K+ in anaerobic bacteria is carried out by the H+-ATPase complex and the Trk (or Trk-like) system of K+ absorption united into the same membrane supercomplex which functions as the H+-K+-pump and supports the high K+ distribution between cell and medium.  相似文献   

11.
牙鲆肠道乳酸菌的分离和鉴定   总被引:4,自引:0,他引:4  
目的:根据微生态学原理,从健康牙鲆的肠道固有菌群中分离乳酸菌。方法:需氧与厌氧培养法。结果:两种方法获得了不同的结果,用LBS(pH6.5)直接分离,从19株分离菌中只获得6株乳酸菌,其中1株P15为乳杆菌;而用LBS(pH5.4)和SL(pH5.4)先富集后分离得到了许多单一的乳杆菌菌落。对所分离的乳杆菌进行生化鉴定,均符合该菌的生化特征。牛津杯抑菌试验显示,乳酸菌对弧菌均有抑制作用,其中乳杆菌P15在pH6.8和pH7.5生长良好,并对弧菌有强力的抑制作用;而在pH8.0和pH8.5时该菌生长不良且无抑菌活性。  相似文献   

12.
We investigated the influence of inhibitors of energy metabolism and ionophores on the growth and formation of metabolic products in alkaliphilic anaerobes characterized by various catabolism types. It was shown that blockage of oxidative phosphorylation by the addition of N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of F1F0 ATP synthase, resulted in a complete arrest of the growth of the acetogenic bacterium Tindallia magadiensis with arginine as electron acceptor. In the presence of pyruvate, substrate-level phosphorylation occurred. The methylotrophic methanogenic archaebacterium Methanosalus zhilinae did not grow with DCCD and vanadate, an inhibitor of E1E2 ATPase, suggesting the presence of two ATPase types in this species. In the saccharolytic alkaliphiles Halonatronum, Amphibacillus tropicus, and Spirochaeta alkalica (which are characterized by different pH optima), the contribution of the H+ gradient to the energy metabolism and, presumably, to the maintenance of the intracellular pH level decreased with an increase in the degree of alkaliphily. Based on the data of an inhibitor assay using protonophores, monensin, and amiloride, we suggest that all of the bacteria tested depend on H+- and Na+-gradients. The Na+/H+ antiport appears to be a universal mechanism of regulating the intracellular pH level and the interaction between the Na+ and the H+ cycles in bacterial cells cultivated under alkaline conditions.  相似文献   

13.
The marine bacterium Vibrio alginolyticus, containing 470 mM-K+ and 70 mM-Na+ inside its cells, was able to regulate the cytoplasmic pH (pH(in)) in the narrow range 7.6-7.8 over the external pH (pH(out)) range 6.0-9.0 in the presence of 400 mM-Na+ and 10 mM-K+. In the absence of external K+, however, pHin was regulated only at alkaline pH(out) values above 7.6. When the cells were incubated in the presence of unusually high K+ (400 mM) and 4 mM Na+, the pH(in) was regulated only at acidic pH(out) values below 7.6. These results could be explained by postulating a K+/H+ antiporter as the regulator of pH(in) over the pH(out) range 6.0-9.0. When Na(+)-loaded/K(+)-depleted cells were incubated in 400 mM-Na+ in the absence of K+, an inside acidic delta pH was generated at pH(out) values above 7.0. After addition of diethanolamine the inside acidic delta pH collapsed transiently and then returned to the original value concomitant with the extrusion of Na+, suggesting the participation of a Na+/H+ antiporter for the generation of an inside acidic delta pH. In the presence of 400 mM-K+, at least 5 mM-Na+ was required to support cell growth at pH(out) below 7.5. An increase in Na+ concentration allowed the cells to grow at a more alkaline pH(out). Furthermore, cells containing more Na+ inside could more easily adapt to grow at alkaline pH(out). These results indicated the importance of Na+ in acidification of the cell interior via a Na+/H+ antiporter in order to support cell growth at alkaline pH(out) under conditions where the activity of a K+/H+ antiporter is marginal.  相似文献   

14.
Proton motive force (PMF), intracellular end product concentrations, and ATP levels were determined when a steady-state Lactobacillus plantarum 8014 anaerobic chemostat culture was shifted to an aerobic condition or was shifted from pH 5.5 to 7.5. The PMF and intracellular ATP levels increased immediately after the culture was shifted from anaerobic to aerobic conditions. The concentrations of intracellular lactate and acetate, which exported protons that contributed to the proton gradient, changed in the same fashion. The H+/lactate stoichiometry, n, varied from 0.8 to 1.2, and the H+/acetate n value changed from 0.8 to 1.6 at 2 h after the shift to aerobic conditions. The n value for acetate excretion remained elevated at aerobic steady state. When the anaerobic culture was shifted from pH 5.5 to 7.5, intracellular ATP increased 20% immediately even though the PMF decreased 50% as a result of the depletion of the transmembrane proton gradient. The H+/lactate n value changed from 0.7 to 1.8, and n for H+/acetate increased from 0.9 to 1.9 at pH 7.5 steady state. In addition, the H+/acetate stoichiometry was always higher than the n value for H+/lactate; both were higher in alkaline than aerobic conditions, demonstrating that L. plantarum 8014 coexcreted more protons with end products to maintain intracellular pH homeostasis and generate proton gradients under aerobic and alkaline conditions. During the transient to pH 7.5, the n value for H+/acetate approached 3, which would spare one ATP.  相似文献   

15.
In previous studies, respiring Bradyrhizobium sp. strain 32H1 cells grown under 0.2% O2, conditions that derepress N2 fixation, were found to have a low proton motive force of less than -121 mV, because of a low membrane potential (delta psi). In contrast, cells grown under 21% O2, which do not fix N2, had high proton motive force values of -175 mV or more, which are typical of respiring bacteria, because of high delta psi values. In the present study, we found that a delta psi of 0 mV in respiring cells requires growth in relatively high-[K+] media (8 mM), low O2 tension, and high internal [K+]. When low-[O2], high-[K+]-grown cells were partially depleted of K+, the delta psi was high. When cells were grown under 21% O2 or in media low in K+ (50 microM K+), the delta psi was again high. The transmembrane pH gradient was affected only slightly by varying the growth or assay conditions. In addition, low-[O2], high-[K+]-grown cells had a greater proton permeability than did high-[O2]-grown cells. To explain these findings, we postulate that cells grown under conditions that derepress N2 fixation contain an electrogenic K+/H+ antiporter that is responsible for the dissipation of the delta psi. The consequence of this alteration in K+ cycling is rerouting of proton circuits so that the putative antiporter becomes the major pathway for H+ influx, rather than the H+-ATP synthase.  相似文献   

16.
目的

探讨细菌性阴道病(BV)与外阴阴道假丝酵母菌病(VVC)患者阴道乳杆菌的功能状态及治疗后阴道乳杆菌的重建情况, 为BV与VVC的乳杆菌补充治疗提供依据。

方法

选取BV与VVC患者及正常对照组女性各30例, 采用前后对照、标准对照的方法, 通过检测患者治疗前后阴道乳杆菌功能(定植密度、乳杆菌分级、产酸能力、产H2O2能力、体外增殖能力)研究该阴道炎症状态下阴道乳杆菌功能的变化和重建情况。

结果

BV患者阴道乳杆菌定植密度为(5.87±1.83)个/HP, 阴道乳杆菌分级正常比例仅为6.67%, H2O2阳性率53.33%, 24 h pH值为5.45, 24 h菌液浊度为23.7 MCF。BV患者治愈后阴道乳杆菌定植密度为(45.28±15.05)个/HP, 乳杆菌分级正常比例为54.55%, H2O2阳性率81.82%, 24 h pH值为4.49, 24 h菌液浊度为46.6 MCF。VVC患者阴道乳杆菌定植密度为(48.53±10.59)个/HP, 乳杆菌分级正常比例为73.33%, H2O2阳性率为80.00%, 24 h pH值为4.41, 24 h菌液浊度为52.2 MCF。VVC患者治愈后阴道乳杆菌定植密度为(47.95±10.28)个/HP, 乳杆菌分级正常比例为90.48%, H2O2阳性率85.71%, 24 h pH值为4.33, 24 h菌液浊度为51.3 MCF。

结论

BV患者阴道乳杆菌功能减退, 治愈后未能完全重建, 需帮助恢复阴道乳杆菌功能状态。VVC患者阴道乳杆菌功能基本正常。

  相似文献   

17.
In a previous work (Trchounian et al., Biol. Membrany 16:416-428 (1999) (in Russian)) we reported the interrelations between production of H2 and H+-K+ exchange in fermenting Escherichia coli grown under anaerobic conditions at pH 7.5. The ion fluxes had stable stoichiometry 2H+/K+ and were N,N'-dicyclohexylcarbodiimide (DCC)-inhibitable at different external pH and K+ activity. In the present study, the H2 production was further studied in fermenting bacteria grown at pH 7.5 or 6.5. The H2 production was inhibited by DCC and did not occur if bacteria were grown at pH 7.5 in a medium containing formate or upon hypoosmotic stress. The H2 production was not sensitive to osmotic stress when bacteria were grown at pH 6.5. Formation of H2 and 2H+/K+ exchange were not observed in mutants with deletions of the hyfoperon genes, encoding membrane-associated hydrogenase 4. K+ influx in these mutants was not sensitive to valinomycin, in contrast to the K+ influx in the parental strain. If grown at pH 6.5, the mutants produced H2 and carried out 2H+/K+ exchange, when subjected to the hyperosmotic stress. The results suggest a participation of hydrogenase 4 in the production of H2 and proton-potassium exchange in fermenting E. coli grown at pH 7.5. In bacteria grown at pH 6.5 or in a medium containing formate, another membrane-bound hydrogenase, namely hydrogenase 3, may be responsible for the H2 production.  相似文献   

18.
Fermentation conditions and microorganisms were determined, based on acid production, glucose concentration as carbohydrate source. Inoculation levels to obtain a stable shrimp waste silage were also determined. Shrimp waste ensilation was an efficient method of preservation, allowing the recovery of chitin and another added-value products such as pigments, proteins and enzymes. From the various lactic acid bacteria tested, Lactobacillus pentosus and Lactobacillus sp. (B2) were the best lactic acid producers, although small quantities of acetic acid were detected in samples inoculated with Lactobacillus pentosus. Therefore B2 was chosen for the analysis of glucose consumption as well as for the determination of optimum inoculation levels. The best results were obtained at 10% (w/w wet basis) and 5% (v/w wet basis) respectively. Presence of starters and initial glucose concentration were critical factors in the fermentation of shrimp waste. High initial glucose and starter concentrations reduced the time and increased the amount of lactic acid produced. The fermentation pattern changed during ensilation from hetero to homofermentative. Shrimp waste ensilation prevented the growth of spoilage microorganisms keeping their microbial counts steady and pH values within the acid region.  相似文献   

19.
The expression and secretion signals of the Sep protein from Lactobacillus fermentum BR11 were used to direct export of two peptidoglycan hydrolases by Lb. fermentum BR11, Lactobacillus rhamnosus GG, Lactobacillus plantarum ATCC 14917 and Lactococcus lactis MG1363. The production levels, hydrolytic and bacteriocidal activities of the Listeria monocytogenes bacteriophage N-acetylmuramoyl-l-alanine amidase endolysin Ply511 and the glycylglycine endopeptidase lysostaphin were examined. Buffering of the growth media to a neutral pH allowed detection of Ply511 and lysostaphin peptidoglycan hydrolytic activity from all lactic acid bacteria. It was found that purified Ply511 has a pH activity range similar to that of lysostaphin with both enzymes functioning optimally under alkaline conditions. Supernatants from lactobacilli expressing lysostaphin reduced viability of methicillin resistant Staphylococcus aureus (MRSA) by approximately 8 log(10) CFU/ml compared to controls. However, supernatants containing Ply511 were unable to control L. monocytogenes growth. In coculture experiments, both Lb. plantarum and Lb. fermentum synthesizing lysostaphin were able to effectively reduce MRSA cell numbers by >7.4 and 1.7 log(10)CFU/ml, respectively, while lactic acid bacteria secreting Ply511 were unable to significantly inhibit the growth of L. monocytogenes. Our results demonstrate that lysostaphin and Ply511 can be expressed in an active form from different lactic acid bacteria and lysostaphin showed superior killing activity. Lactobacilli producing lysostaphin may have potential for in situ biopreservation in foodstuffs or for prevention of S. aureus infections.  相似文献   

20.
The growth of Vibrio alginolyticus and V. costicola, which possess respiration-dependent Na+ pumps, was highly resistant to the proton conductor carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), in alkaline growth media, even though the membrane was rendered permeable to H+. The pH dependence of CCCP-resistant growth was similar to that of the Na+ pump. In contrast, Escherichia coli ML308-225 showed neither Na+ pump activity nor CCCP-resistant growth, even when grown in alkaline, Na+-rich media. These results suggest that certain bacteria possess the Na+ pump and are thus able to grow under the conditions where H+ circulation across the membrane does not take place. Moreover, V. alginolyticus growing in the presence of CCCP maintains normal levels of internal K+, Na+, and H+. The Na+ pump, therefore, makes the growth of these organisms resistant to CCCP by maintaining the intracellular cation environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号