首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermostable isoenzyme (T80) of xylose isomerase from the eukaryote xerophyte Cereus pterogonus was purified to homogeneity by precipitation with ammonium sulfate and column chromatography on Dowex-1 ion exchange, with Sephadex G-100 gel filtration, resulting in an approximately 25.55-fold increase in specific activity and a final yield of approximately 17.9%. Certain physiochemical and kinetic properties (Km and Vmax) of the T80 xylose isomerase isoenzyme were investigated. The molecular mass of the purified T80 isoenzyme was 68 kD determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polyclonal antibodies against the purified T80 isoenzyme recognized a single polypeptide band on Western blots. The activation energy required for the thermal denaturation of the isoenzyme was determined to be 61.84 KJ mol?1. The use of differential scanning calorimetry established the melting temperature of the CPXI isoenzyme to be 80°C, but when studied with added metal ions, melting temperature increases to more than the normal. Fluorescence spectroscopy of T80 isoenzymes yielded an emission peak with λem at 320 nm and 340 nm, respectively, confirming the presence of Trp residue in these proteins. Electron paramagnetic resonance (EPR) analysis at liquid nitrogen temperature established the presence of Mn2+ and Co2+ associated with each isoenzyme. These enzyme species exhibited different thermal and pH stabilities compared to their mesophilic counterparts and offered greater efficiency in functioning as a potential alternate catalytic converter of glucose in the production of high-fructose corn syrup (HFCS) for the sweetener industry and for ethanol production.  相似文献   

2.
A thermostable d-xylase isomerase from a newly isolated thermophilic Streptomyces sp. (PLC) strain is described. The enzyme was purified to homogeneity. It is a homotetramer with a native molecular mass of 183 kDa and a subunit molecular mass of 46 kDa. The enzyme has a K m of 35 mM for d-xylose and also accepts d-glucose as substrate, however, with a tenfold higher K m (0.4 M) and half the maximum velocity. Both the activity and stability of this d-xylose isomerase depend strongly on divalent metal ions. Two metal ions bind per subunit to non-identical sites. Mg2+, Mn2+ and Co2+ are of comparable efficiency for the d-xylose isomerase reaction. Con2+ is the most efficient cofactor for d-glucose isomerization. The enzyme remains fully active up to 95°C. The activity decreases at 53°C in the presence of Co2+ and Mg2+ with a half-life of 7 and 9 days respectively. In the presence of Mn2+ the enzyme activity remains constant for at least 10 days and at 70°C 50% of the activity is lost after 5 days.  相似文献   

3.
The isolation and purification to electrophoretical homogeneity and characterization of a protein disulfide isomerase from rat liver mitochondria is reported. The purified enzyme exhibits a single band on sodium dodecylsulfatepolyacrylamide gel electrophoresis with an apparent molecular weight of approximately 54 kDa. Comparatively, the microsomal form shows an apparent molecular weight of 57 kDa indicating that the two forms are slightly different. The antibody raised against the microsomal isoform does not recognize the mitochondrial enzyme. To characterize the enzyme, different classical methodologies utilized for protein disulfide isomerase estimation have been adopted. The isolated enzyme is active with all of them, indicating that it comprises all the features of a typical protein disulfide isomerase. At the mitochondrial level the enzyme appears mostly localized at the membrane level. Its potential involvement in mitochondrial membrane permeability control is also discussed.  相似文献   

4.
Summary The isomerization of D-glucose in mixed ethanol-water was studied at various reaction temperatures (40–70 °C), employing glucose isomerase fromStreptomyces phaeochromogenes andClostridium thermohydrosulfuricum, respectively. The thermophilicClostridium enzyme was considerably, more stable towards the combination of organic cosolvent and increased temperature and with this enzyme a 55% yield of fructose from glucose was obtained at relatively low concentration of ethanol (40 %).  相似文献   

5.
Some of the conserved residues at subunit interfaces of thermophilic xylose isomerases (XIs) were selected by means of both multiple sequences alignment and subunit interactions analysis of XIs, and then were mutated for improving the activity of Thermus thermophilus xylose isomerase (TtXI). By site-directed mutagenesis, single (D375G, K355A, V144A) and double (D375G/V385A) mutations were introduced into TtXI containing a N91D mutation site, namely, TtXI-N91D. It was shown that the specific activities of mutants D375G, K355A and V144A were remarkably increased over a temperature range of 40–90 °C at pH 7.0. The activities of mutants D375G/V385A, D375G, V144A and K355A were 1.14-, 1.62-, 2.49- and 3.02-fold greater than that of TtXI-N91D at 75 °C, respectively. Over the pH range of 5.0–9.0, the activities of mutants D375G, K355A and V144A were greater than that of TtXI-N91D at 60 °C. The thermostability of all mutants, except K355A, was lower than that of TtXI-N91D. The results suggest that the activity of TtXI could be engineered by site-directed mutagenesis on the conserved residues at subunit interfaces. This method could be employed for improving the activity of other thermophilic XIs.  相似文献   

6.
This study investigates thermophilic imidase activity of the liver. We demonstrate that imidase catalyzes the hydrolysis of imides at a temperature substantially higher than that of its native environment. Then, a thermophilic imidase is purified to homogeneity from pig liver, and its thermoproperties are studied. About 2500-fold of purification and 15% yield of imidase activity are obtained after ammonium sulfate precipitation, octyl, DEAE, chelation, and gel filtration chromatography. While avoiding heat treatment for the protein purification, this study also indicates that only one enzyme is responsible for the imidase activity. This homogenous enzyme prefers to catalyze hydrolysis of imides at above 60 degrees C rather than at the body temperature of a pig. Although stable at below 50 degrees C, imidase quickly loses its activity at above 65 degrees C. Thus, the temperature effect on imidase activity is limited mainly by its thermostability. Substrate specificity of imidase is also temperature dependent. Our results demonstrate that the hydrolysis of physiological substrates is the most temperature dependent and that of hydantoins is the least temperature dependent. When increasing the reaction temperature from 25 to 60 degrees C, specific activities increase 50- and 60-fold for dihydrouracil and dihydrothymine, respectively. The temperature effect on the K(m) and V(max) of imidase is substrate dependent.  相似文献   

7.
The xylA gene, coding for xylose isomerase, from the extreme thermophile, Caldanaerobacter subterraneus subsp. yonseiensis was cloned, sequenced, and expressed in Escherichia coli. The nucleotide sequence of the xylA gene encoded a polypeptide of 438 residues with a calculated molecular weight of 50,170 Da. The purified XylA showed high sequence homology (92% identity) with that of Thermoanaerobacter thermohydrosulfuricus. The recombinant enzyme expressed in Escherichia coli was purified by heat treatment and gel chromatography. The purified enzyme was thermostable with optimal activity at 95°C. The enzyme required divalent cations including Zn2+ for its maximal activity and thermostability.  相似文献   

8.
Production of a xylose isomerase (XI) with high tolerance to the inhibitors xylitol and calcium, and high activity at the low pH and temperature conditions characteristic of yeast fermentations, is desirable for a simultaneous isomerization/fermentation process for cellulosic ethanol production. A putative XI gene (xylA) from the marine bacterium Fulvimarina pelagi was identified by sequence analysis of the F. pelagi genome, and was PCR amplified, cloned, and expressed in Escherichia coli. The rXI was produced in shake flask and fed‐batch fermentations using glucose as the growth substrate. The optimum pH for rXI was approximately 7, although activity was evident at pH as low as 5.5. The purified rXI had a molecular weight in 160 kDA, a Vmax of 0.142 U/mg purified rXI, and a KM for xylose in the range of 1.75–4.17 mM/L at pH 6.5 and a temperature of 35°C. The estimated calcium and xylitol KI values for rXI in cell‐free extracts were 2,500 mg/L and >50 mM, respectively. The low KM of the F. pelagi xylose isomerase is consistent with the low nutrient conditions of the pelagic environment. These results indicate that Ca2+ and xylitol are not likely to be inhibitory in applications employing the rXI from F. pelagi to convert xylose to xylulose in fermentations of complex biomass hydrolysates. A higher Vmax at low pH (<6) and temperature (30°C) would be preferable for use in biofuels production. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1230–1237, 2016  相似文献   

9.
【目的】建立分离、纯化分枝杆菌脂聚糖的方法,初步比较分析不同菌株来源的脂阿拉伯甘露聚糖(Lipoarabinomannan,LAM)和脂甘露聚糖(Lipomannan,LM)的结构差异及研究脂聚糖刺激对巨噬细胞环氧合酶-2(Cyclooxygenase-2,COX-2)蛋白表达的影响。【方法】应用Triton X-114液相法提取脂聚糖,电洗脱法分离纯化,基质辅助激光解析电离串联飞行时间质谱(MALDI-TOF/TOF-MS)进行分子量鉴定;基于特异性识别非还原性末端α-D-甘露糖基的刀豆球蛋白(Concanavalin A,Con A)分析新诺分枝杆菌JDM601、结核分枝杆菌H37Rv标准株和耻垢分枝杆菌mc2155脂聚糖的结构差异;进一步用Western blot检测脂聚糖刺激的RAW 264.7巨噬细胞COX-2蛋白的表达。【结果】通过电洗脱法成功纯化出3种菌株脂聚糖;MALDI-TOF/TOF-MS鉴定发现,分子量从小到大依次为新诺分枝杆菌JDM601、耻垢分枝杆菌mc2155和结核分枝杆菌H37Rv来源的脂聚糖。Western blot显示,Con A能与结核分枝杆菌H37Rv标准株来源的LAM相互作用,而不能与新诺分枝杆菌JDM601和耻垢分枝杆菌来源的LAM相互作用;并且发现Con A与新诺分枝杆菌JDM601来源的LM有很强的反应,然而与其余两种来源的LM反应很弱。3种菌株来源的脂聚糖均能刺激RAW 264.7巨噬细胞COX-2蛋白的表达。【结论】首次成功对来源于中国临床分枝杆菌分离株的脂聚糖进行了分离纯化,初步探讨了不同菌株来源分枝杆菌脂聚糖的结构差异,并表明LAM和LM均能刺激巨噬细胞诱导COX-2蛋白的表达,为进一步研究其对宿主的毒力和免疫机制奠定了基础。  相似文献   

10.
Fan L  Zhang Y  Qu W  Wang J  Shao W 《Biotechnology letters》2011,33(3):593-598
Three genes, xylA-like, xylA and xylB, were cloned and sequenced from the chromosome of Thermoanaerobacter ethanolicus JW200. xylA and xylB share an operon and encode xylose isomerase and xylulokinase, respectively. The xylA-like gene locates upstream of xylAB operon and encodes a hypothetical protein that lacks xylose isomerase activity. The xylose isomerase was expressed in Escherichia coli and purified by heat treatment and an ion-exchange chromatography. The enzyme had highest activity at 85°C and pH 7.0, and a half-life for 1 h at 85°C. The K (m) and V (max) values for xylose were 11 mM and 25 U/mg, respectively. The high level of expression, easy purification, and thermostability of the XylA from T. ethanolicus JW200 suggests industrial usefulness.  相似文献   

11.
Xylose isomerase produced by Bacillus thermoantarcticus was purified 73-fold to homogeneity and its biochemical properties were determined. It was a homotetramer with a native molecular mass of 200 kDa and a subunit molecular mass of 47 kDa, with an isoelectric point at 4.8. The enzyme had a K m of 33 mM for xylose and also accepted D-glucose as substrate. Arrhenius plots of the enzyme activity of xylose isomerase were linear up to a temperature of 85°C. Its optimum pH was around 7.0, and it had 80% of its maximum activity at pH 6.0. This enzyme required divalent cations for its activity and thermal stability. Mn2+, Co2+ or Mg2+ were of comparable efficiency for xylose isomerase reaction, while Mg2+ was necessary for glucose isomerase reaction. Journal of Industrial Microbiology & Biotechnology (2001) 27, 234–240. Received 18 March 2001/ Accepted in revised form 03 July 2001  相似文献   

12.
Abstract Biofilms containing diverse microflora were developed on bitumen-painted steel and glass tiles suspended in a chemostat model of a water distribution system. Escherichia coli , taken from a naturally occurring biofilm, was transformed with a plasmid containing the anaerobically induced nirB promoter fused to the lacZ reporter gene. The resulting transformant, PRB1, was introduced into the chemostat. After 7 and 13 days, an E. coli strain with an anaerobically induced Lac+ phenotype was present in the biofilm. Development of an episcopic differential interference contrast technique combined with UV fluorescence microscopy enabled the simultaneous visualization of E. coli in the biofilm using a fluorescent probe to detect expression of the gusA reporter gene and a lacZ fluorescent probe to monitor anaerobic expression of β-galactosidase from pnirB .  相似文献   

13.
阿拉伯糖-5-磷酸异构酶(Kds D)是2-酮-3-脱氧辛糖酸(KDO)生物合成途径的第一个关键限速酶,通过无缝克隆技术将拟南芥Kds D基因构建至原核表达载体p ET-HTT,经过IPTG诱导,在大肠杆菌BL21(DE3)中获得了大量重组蛋白的可溶性表达;表达产物经Ni-NTA亲和层析和分子筛层析(SEC)方法进行酶蛋白的分离纯化步骤,得到纯度85%以上的高纯度酶;分子筛层析结果发现纯化后的目的蛋白Kds D在溶液中主要以多聚体、二聚体和单体形式存在,这同微生物来源Kds D酶在溶液中以四聚体形式存在很大差异;进一步使用Western blotting和MALDI-TOF MASS技术对纯化的蛋白进行鉴定;测定了拟南芥Kds D酶学性质,证明该酶催化反应的最适p H值为8.0,最适作用温度为37℃,各种金属离子在低浓度均对酶活性存在不同程度的抑制作用,其中以Co~(2+)、Cd~(2+)对酶活性的抑制作用最强,而5 mmol/L金属螯合剂EDTA对酶有激活作用。此外,以阿拉伯糖-5-磷酸(A5P)为底物时,拟南芥Kds D酶动力学常数Vmax和Km值分别为0.18 mmol/(L·min)、0.16 mmol/L,比较发现该酶与底物的亲和性高于大肠杆菌Kds D。以上研究结果为Kds D蛋白结构与功能及其在新型抗生素研制领域中的工业化应用奠定了基础。  相似文献   

14.
The xylA gene coding for xylose isomerase from the hyperthermophile Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 444 residues with a calculated molecular weight of 50,892. The native enzyme was a homotetramer with a molecular weight of 200,000. This xylose isomerase was a member of the family II enzymes (these differ from family I isomerases by the presence of approximately 50 additional residues at the amino terminus). The enzyme was extremely thermostable, with optimal activity above 95 degrees C. The xylose isomerase showed maximum activity at pH 7.1, but it had high relative activity over a broad pH range. The catalytic efficiency (kcat/Km) of the enzyme was essentially constant between 60 and 90 degrees C, and the catalytic efficiency decreased between 90 and 98 degrees C primarily because of a large increase in Km. The T. neapolitana xylose isomerase had a higher turnover number and a lower Km for glucose than other family II xylose isomerases. Comparisons with other xylose isomerases showed that the catalytic and cation binding regions were well conserved. Comparison of different xylose isomerase sequences showed that numbers of asparagine and glutamine residues decreased with increasing enzyme thermostability, presumably as a thermophilic strategy for diminishing the potential for chemical denaturation through deamidation at elevated temperatures.  相似文献   

15.
Phenylalanine dehydrogenase (L-phenylalanine:NAD oxidoreductase, deaminating; EC 1.4.1.-) was found in various thermophilic actinomycetes. We purified the enzyme to homogeneity from Thermoactinomyces intermedius IFO 14230 by heat treatment and by Red Sepharose 4B, DEAE-Toyopearl, Sepharose CL-4B, and Sephadex G-100 chromatographies with a 13% yield. The relative molecular weight of the native enzyme was estimated to be about 270,000 by gel filtration. The enzyme consists of six subunits identical in molecular weight (41,000) and is highly thermostable: it is not inactivated by incubation at pH 7.2 and 70 degrees C for at least 60 min or in the range of pH 5 to 10.8 at 50 degrees C for 10 min. The enzyme preferably acts on L-phenylalanine and its 2-oxo analog, phenylpyruvate, in the presence of NAD and NADH, respectively. Initial velocity and product inhibition studies showed that the oxidative deamination proceeds through a sequential ordered binary-ternary mechanism. The Km values for L-phenylalanine, NAD, phenylpyruvate, NADH, and ammonia were 0.22, 0.078, 0.045, 0.025, and 106 mM, respectively. The pro-S hydrogen at C-4 of the dihydronicotinamide ring of NADH was exclusively transferred to the substrate.  相似文献   

16.
S-Adenosylhomocysteine hydrolase from Sulfolobus solfataricus was expressed in Escherichia coli by inserting the genomic fragment containing the gene encoding for S-adenosylhomocysteine hydrolase downstream the isopropyl-beta-d-thiogalactoside-inducible promoter of pTrc99A expression vector. An ATG positioned 25 bp upstream of the gene which is in frame with a stop codon was utilized as the initiation codon. This construct was used to transform E. coli RB791 and E. coli JM105 strains. The recombinant protein, purified by a fast and efficient two-step procedure (yield of 0.4 mg of enzyme per gram of cells), does not appear homogeneous on SDS-PAGE because of the presence of a protein contaminant corresponding to a "truncated" S-adenosylhomocysteine hydrolase subunit lacking the first 24 amino acid residues. The recombinant enzyme shows the same molecular mass, optimum temperature, and kinetic features of S-adenosylhomocysteine hydrolase isolated from S. solfataricus but it is less thermostable. To construct a vector which presents a correct distance between the ribosome-binding site and the start codon of S-adenosylhomocysteine hydrolase gene, a NcoI site was created at the translation initiation codon using site-directed mutagenesis. The expression of the homogeneous mutant S-adenosylhomocysteine hydrolase was achieved at high level (1.7 mg of mutant protein per gram of cells). The mutant S-adenosylhomocysteine hydrolase and the native one were indistinguishable in all physicochemical and kinetic properties including thermostability, indicating that the interactions involving the NH(2)-terminal sequence of the protein play a role in the thermal stability of S. solfataricus S-adenosylhomocysteine hydrolase.  相似文献   

17.
A new acylphosphatase from human erythrocytes was isolated by an original purification procedure. It is an isoenzyme of the well-characterized human skeletal muscle acylphosphatase. The erythrocyte enzyme shows hydrolytic activity on acyl phosphates with higher affinity than the muscle enzyme for some substrates and phosphorylated inhibitors. The sequence was determined by characterizing the peptides purified from tryptic, peptic, and Staphylococcus aureus V8 protease digests of the protein, and it was found to differ in 44% of the total positions as compared to the human muscle enzyme. About one-third of these differences are in the form of strictly conservative replacements. The protein consists of 98 amino acid residues; it has an acetylated NH2-terminus and does not contain cysteine: (sequence in text).  相似文献   

18.
从甘肃玉门油田地表土中分离到一株嗜热木糖利用菌,地芽孢杆菌Y565-5。利用PCR方法从该菌株中克隆得到一个木糖异构酶基因,xylA。该基因开放阅读框长1182 bp,编码394个氨基酸,XylA氨基酸序列与Geobacillus sp.Y412MC52相似性达到99%。将xylA基因克隆到原核表达载体pET-28a(+)上,得到重组质粒pET-28a(+)-xylA,然后将此重组质粒转化至BL21(DE3)中,经IPTG诱导后,通过SDS-PAGE电泳检测出明显的45 kD(相对分子质量)特异性蛋白质条带,并且通过半胱氨酸咔唑法检测出表达产物具有木糖异构酶的活性。对其酶学性质的研究发现,XylA最适温度为90°C,最适pH值为8.0。  相似文献   

19.
A xylose reductase (XR) gene was identified from the Neurospora crassa whole-genome sequence, expressed heterologously in Escherichia coli, and purified as a His6-tagged fusion in high yield. This enzyme is one of the most active XRs thus far characterized and may be used for the in vitro production of xylitol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号