首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we developed a novel method for estimating human circadian phase with noninvasive ambulatory measurements combined with subject-independent multiple regression models and a curve-fitting approach. With this, we were able to estimate circadian phase under real-life conditions with low subject burden, i.e., without need of constant routine (CR) laboratory conditions, and without measuring standard circadian markers, such as core body temperature (CBT) or pineal hormone melatonin rhythms. The precision of ambulatory-derived estimated circadian phase was within an error of 12?±?41?min (mean?±?SD) in comparison to melatonin phase during a CR protocol. The physiological measures could be reduced to a triple combination: skin temperatures, irradiance in the blue spectral band of ambient light, and motion acceleration. Here, we present a nonlinear regression model approach based on artificial neural networks for a larger data set (25 healthy young males), including both the original data and additional data collected in the same protocol and using the same equipment. Throughout our validation study, subjects wore multichannel ambulatory monitoring devices and went about their daily routine for 1 wk. The devices collected a large number of physiological, behavioral, and environmental variables, including CBT, skin temperatures, cardiovascular and respiratory functions, movement/posture, ambient temperature, spectral composition and intensity of light perceived at eye level, and sleep logs. After the ambulatory phase, study volunteers underwent a 32-h CR protocol in the laboratory for measuring unmasked circadian phase (i.e., "midpoint" of the nighttime melatonin rhythm). To overcome the complex masking effects of many different confounding variables during ambulatory measurements, neural network-based nonlinear regression techniques were applied in combination with the cross-validation approach to subject-independent prediction of circadian phase. The most accurate estimate of circadian phase with a prediction error of -3?±?23?min (mean?±?SD) was achieved using only two types of the measured variables: skin temperatures and irradiance for ambient light in the blue spectral band. Compared to our previous linear multiple regression modeling approach, motion acceleration data can be excluded and prediction accuracy, nevertheless, improved. Neural network regression showed statistically significant improvement of variance of prediction error over traditional approaches in determining circadian phase based on single predictors (CBT, motion acceleration, or sleep logs), even though none of these variables was included as predictor. We, therefore, have identified two sets of noninvasive measures that, combined with the prediction model, can provide researchers and clinicians with a precise measure of internal time, in spite of the masking effects of daily behavior. This method, here validated in healthy young men, requires testing in a clinical or shiftwork population suffering from circadian sleep-wake disorders. (Author correspondence: vitaliy.kolodyazhniy@sbg.ac.at ).  相似文献   

2.
《Chronobiology international》2013,30(8):1078-1097
Recently, we developed a novel method for estimating human circadian phase with noninvasive ambulatory measurements combined with subject-independent multiple regression models and a curve-fitting approach. With this, we were able to estimate circadian phase under real-life conditions with low subject burden, i.e., without need of constant routine (CR) laboratory conditions, and without measuring standard circadian markers, such as core body temperature (CBT) or pineal hormone melatonin rhythms. The precision of ambulatory-derived estimated circadian phase was within an error of 12?±?41?min (mean?±?SD) in comparison to melatonin phase during a CR protocol. The physiological measures could be reduced to a triple combination: skin temperatures, irradiance in the blue spectral band of ambient light, and motion acceleration. Here, we present a nonlinear regression model approach based on artificial neural networks for a larger data set (25 healthy young males), including both the original data and additional data collected in the same protocol and using the same equipment. Throughout our validation study, subjects wore multichannel ambulatory monitoring devices and went about their daily routine for 1 wk. The devices collected a large number of physiological, behavioral, and environmental variables, including CBT, skin temperatures, cardiovascular and respiratory functions, movement/posture, ambient temperature, spectral composition and intensity of light perceived at eye level, and sleep logs. After the ambulatory phase, study volunteers underwent a 32-h CR protocol in the laboratory for measuring unmasked circadian phase (i.e., “midpoint” of the nighttime melatonin rhythm). To overcome the complex masking effects of many different confounding variables during ambulatory measurements, neural network–based nonlinear regression techniques were applied in combination with the cross-validation approach to subject-independent prediction of circadian phase. The most accurate estimate of circadian phase with a prediction error of ?3?±?23?min (mean?±?SD) was achieved using only two types of the measured variables: skin temperatures and irradiance for ambient light in the blue spectral band. Compared to our previous linear multiple regression modeling approach, motion acceleration data can be excluded and prediction accuracy, nevertheless, improved. Neural network regression showed statistically significant improvement of variance of prediction error over traditional approaches in determining circadian phase based on single predictors (CBT, motion acceleration, or sleep logs), even though none of these variables was included as predictor. We, therefore, have identified two sets of noninvasive measures that, combined with the prediction model, can provide researchers and clinicians with a precise measure of internal time, in spite of the masking effects of daily behavior. This method, here validated in healthy young men, requires testing in a clinical or shiftwork population suffering from circadian sleep-wake disorders. (Author correspondence: )  相似文献   

3.
The effects of a single morning and evening carbohydrate-rich meal for 3 consecutive days on circadian phase of core body temperature (CBT), heart rate, and salivary melatonin rhythms were compared under controlled constant routine conditions. In 10 healthy young men entrained to a natural light-dark cycle with regular sleep timing, CBT and heart rate were significantly elevated for approximately 8 h after the last evening carbohydrate-rich meal (EM), and nocturnal melatonin secretion (as measured by salivary melatonin and urinary 6-sulphatoxymelatonin levels) was reduced, compared to the morning carbohydrate-rich meal (MM) condition. Thus, circadian phase could not be measured until the following day due to this acute masking effect. The day after the last meal intervention, MM showed a significant advanced circadian phase position in CBT (+59+/-12 min) and heart rate (+43+/-18 min) compared to EM. However, dim-light melatonin onset was not significantly changed (+15+/-13 min). The results are discussed with respect to central (light-entrainable) and peripheral (food-entrainable) oscillators. Food may be a zeitgeber in humans for the food-entrainable peripheral oscillators, but melatonin data do not support such a conclusion for the light-entrainable oscillator in the suprachiasmatic nucleus.  相似文献   

4.
A circadian pacemaker within the central nervous system regulates the approximately 24-h physiologic rhythms in sleep cycles, hormone secretion, and other physiologic functions. Because the pacemaker cannot be examined directly in humans, markers of pacemaker function must be used to study the pacemaker and its response to environmental stimuli. Core body temperature (CBT), plasma cortisol, and plasma melatonin are three marker variables frequently used to estimate the phase of the human pacemaker. Measurements of circadian phase using markers can contain variability due to the circadian pacemaker itself, the intrinsic variability of the marker relative to the pacemaker, the method of analysis of the marker, and the marker assay. For this report, we compared the mathematical variability of a number of methods of identifying circadian phase from CBT, plasma cortisol, and plasma melatonin data collected in a protocol in which pacemaker variability was minimized using low light levels and regular timing of both the light pattern and the rest/activity schedule. We hoped to assess the relative variabilities of the different physiological markers and the analysis methods. Methods were based on the crossing of an absolute threshold, on the crossing of a relative threshold, or on fitting a curve to all data points. All methods of calculating circadian phase from plasma melatonin data were less variable than those calculated using CBT or cortisol data. The standard deviation for the phase estimates using CBT data was 0.78 h, using cortisol data was 0.65 h, and for the eight analysis methods using melatonin data was 0.23 to 0.35 h. While the variability for these markers might be different for other subject populations and/or less stringent study conditions, assessment of the intrinsic variability of the different calculations of circadian phase can be applied to allow inference of the statistical significance of phase and phase shift calculations, as well as estimation of sample size or statistical power for the number of subjects within an experimental protocol.  相似文献   

5.
It is not clear whether shifting of sleep per se, without a concomitant change in the light-dark cycle, can induce a phase shift of the human circadian pacemaker. Two 9-day protocols (crossover, counterbalanced order) were completed by 4 men and 6 women (20-34 years) after adherence to a 2330 to 0800 h sleep episode at home for 2 weeks. Following a modified baseline constant routine (CR) protocol on day 2, they remained under continuous near-darkness (< 0.2 lux, including sleep) for 6 days. Four isocaloric meals were equally distributed during scheduled wakefulness, and their timing was held constant. Subjects remained supine inbed from 2100 to 0800 h on all days; sleep was fixed from 2330 to 0800 h in the control condition and was gradually advanced 20 min per day during the sleep advance condition until a 2-h difference had been attained. On day 9, a 25 to 27 h CR protocol (approximately 0.1 lux) was carried out. Phase markers were the evening decline time of the core body temperature (CBT) rhythm and salivary melatonin onset (3 pg/ml threshhold). In the fixed sleep condition, the phase drift over 7 days ranged from +1.62 to -2.56 h (for both CBT and melatonin rhythms, which drifted in parallel). The drifts were consistently advanced in the sleep advance schedule by +0.66 +/- 0.23 (SEM) h for CBT (p = 0.02) and by 0.27 +/- 0.14 h for melatonin rhythms (p = 0.09). However, this advance was small to medium according to effect size. Sleep per se may feed back onto the circadian pacemaker, but it appears to be a weak zeitgeber in humans.  相似文献   

6.
Clinical investigators often use ambulatory temperature monitoring to assess the endogenous phase and amplitude of an individual's circadian pacemaker for diagnostic and research purposes. However, an individual's daily schedule includes changes in levels of activity, in posture, and in sleep-wake state, all of which are known to have masking or evoked effects on core body temperature (CBT) data. To compensate for or to correct these masking effects, many investigators have developed "demasking" techniques to extract the underlying circadian phase and amplitude data. However, the validity of these methods is uncertain. Therefore, the authors tested a variety of analytic methods on two different ambulatory data sets from two different studies in which the endogenous circadian pacemaker was not synchronized to the sleep-wake schedule. In both studies, circadian phase estimates calculated from CBT collected when each subject was ambulatory (i.e., free to perform usual daily activities) were compared to those calculated during the same study when the same subject's activities were controlled. In the first study, 24 sighted young and older subjects living on a 28-h scheduled "day" protocol were studied for approximately 21 to 25 cycles of 28-h each. In the second study, a blind man whose endogenous circadian rhythms were not synchronized to the 24-h day despite his maintenance of a regular 24-h sleep-wake schedule was studied for more than 80 consecutive 24-h days. During both studies, the relative phase of the endogenous (circadian) and evoked (scheduled activity-rest) components of the ambulatory temperature data changed progressively and relatively slowly, enabling analysis of the CBT rhythm at nearly all phase relationships between the two components. The analyses of the ambulatory temperature data demonstrate that the masking of the CBT rhythm evoked by changes in activity levels, posture, or sleep-wake state associated with the evoked schedule of activity and rest can significantly obscure the endogenous circadian component of the signal, the object of study. In addition, the masking effect of these evoked responses on temperature depends on the circadian phase at which they occur. These nonlinear interactions between circadian phase and sleep-wake schedule render ambulatory temperature data unreliable for the assessment of endogenous circadian phase. Even when proposed algebraic demasking techniques are used in an attempt to reveal the endogenous temperature rhythm, the phase estimates remain severely compromised.  相似文献   

7.
The purpose of our study was to understand the relationship between the components of the three-process model of sleepiness regulation (homeostatic, circadian, and sleep inertia) and the thermoregulatory system. This was achieved by comparing the impact of a 40-h sleep deprivation vs. a 40-h multiple nap paradigm (10 cycles with 150/75 min wakefulness/sleep episodes) on distal and proximal skin temperatures, core body temperature (CBT), melatonin secretion, subjective sleepiness, and nocturnal sleep EEG slow-wave activity in eight healthy young men in a "controlled posture" protocol. The main finding of the study was that accumulation of sleep pressure increased subjective sleepiness and slow-wave activity during the succeeding recovery night but did not influence the thermoregulatory system as measured by distal, proximal, and CBT. The circadian rhythm of sleepiness (and proximal temperature) was significantly correlated and phase locked with CBT, whereas distal temperature and melatonin secretion were phase advanced (by 113 +/- 28 and 130 +/- 30 min, respectively; both P < 0.005). This provides evidence for a primary role of distal vasodilatation in the circadian regulation of CBT and its relationship with sleepiness. Specific thermoregulatory changes occur at lights off and on. After lights off, skin temperatures increased and were most pronounced for distal; after lights on, the converse occurred. The decay in distal temperature (vasoconstriction) was significantly correlated with the disappearance of sleep inertia. These effects showed minor and nonsignificant circadian modulation. In summary, the thermoregulatory system seems to be independent of the sleep homeostat, but the circadian modulation of sleepiness and sleep inertia is clearly associated with thermoregulatory changes.  相似文献   

8.
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or intrinsic (retinal) network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years) with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux). Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO) was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells mediate this circadian variation.  相似文献   

9.
The mammalian retina contains both visual and circadian photoreceptors. In humans, nocturnal stimulation of the latter receptors leads to melatonin suppression, which might cause reduced nighttime sleepiness. Melatonin suppression is maximal when the nasal part of the retina is illuminated. Whether circadian phase shifting in humans is due to the same photoreceptors is not known. The authors explore whether phase shifts and melatonin suppression depend on the same retinal area. Twelve healthy subjects participated in a within-subjects design and received all of 3 light conditions--1) 10 lux of dim light on the whole retina, 2) 100 lux of ocular light on the nasal part of the retina, and 3) 100 lux of ocular light on the temporal part of the retina--on separate nights in random order. In all 3 conditions, pupils were dilated before and during light exposure. The protocol consisted of an adaptation night followed by a 23-h period of sustained wakefulness, during which a 4-h light pulse was presented at a time when maximal phase delays were expected. Nasal illumination resulted in an immediate suppression of melatonin but had no effect on subjective sleepiness or core body temperature (CBT). Nasal illumination delayed the subsequent melatonin rhythm by 78 min, which is significantly (p= 0.016) more than the delay drift in the dim-light condition (38 min), but had no detectable phase-shifting effect on the CBT rhythm. Temporal illumination suppressed melatonin less than the nasal illumination and had no effect on subjective sleepiness and CBT. Temporal illumination delayed neither the melatonin rhythm nor the CBT rhythm. The data show that the suppression of melatonin does not necessarily result in a reduction of subjective sleepiness and an elevation ofCBT. In addition, 100 lux of bright white light is strong enough to affect the photoreceptors responsible for the suppression of melatonin but not strong enough to have a significant effect on sleepiness and CBT. This may be due to the larger variability of the latter variables.  相似文献   

10.
Exposure to light and darkness can rapidly induce phase shifts of the human circadian pacemaker. A type 0 phase response curve (PRC) to light that has been reported for humans was based on circadian phase data collected from constant routines performed before and after a three-cycle light stimulus, but resetting data observed throughout the entire resetting protocol have not been previously reported. Pineal melatonin secretion is governed by the hypothalamic circadian pacemaker via a well-defined neural pathway and is reportedly less subject to the masking effects of sleep and activity than body temperature. The authors reasoned that observation of the melatonin rhythm throughout the three-cycle light resetting trials could provide daily phase-resetting information, allowing a dynamic view of the resetting response of the circadian pacemaker to light. Subjects (n = 12) living in otherwise dim light (approximately 10-15 lux) were exposed to a noncritical stimulus of three cycles of bright light (approximately 9500 lux for 5 h per day) timed to phase advance or phase delay the human circadian pacemaker; control subjects (n = 11) were scheduled to the same protocols but exposed to three 5-h darkness cycles instead of light. Subjects underwent initial and final constant routine phase assessments; hourly melatonin samples and body temperature data were collected throughout the protocol. Average daily phase shifts of 1 to 3 h were observed in 11 of 12 subjects receiving the bright light, supporting predictions obtained using Kronauer's phase-amplitude model of the resetting response of the human circadian pacemaker. The melatonin rhythm in the 12th subject progressively attenuated in amplitude throughout the resetting trial, becoming undetectable for >32 hours preceding an abrupt reappearance of the rhythm at a shifted phase with a recovered amplitude. The data from control subjects who remained in dim lighting and darkness delayed on average -0.2 h per day, consistent with the daily delay expected due to the longer than 24-h intrinsic period of the human circadian pacemaker. Both temperature and melatonin rhythms shifted by equivalent amounts in both bright light-treated and control subjects (R = 0.968; p<0.0001; n = 23). Observation of the melatonin rhythm throughout a three-cycle resetting trial has provided a dynamic view of the daily phase-resetting response of the human circadian pacemaker. Taken together with the observation of strong type 0 resetting in humans in response to the same three-cycle stimulus applied at a critical phase, these data confirm the importance of considering both phase and amplitude when describing the resetting of the human circadian pacemaker by light.  相似文献   

11.
A physiological dose of orally administered melatonin shifts circadian rhythms in humans according to a phase-response curve (PRC) that is nearly opposite in phase with the PRCs for light exposure: melatonin delays circadian rhythms when administered in the morning and advances them when administered in the afternoon or early evening. The human melatonin PRC provides critical information for using melatonin to treat circadian phase sleep and mood disorders, as well as maladaptation to shift work and transmeridional air travel. The human melatonin PRC also provides the strongest evidence to date for a function of endogenous melatonin and its suppression by light in augmenting entrainment of circadian rhythms by the light-dark cycle.  相似文献   

12.
A physiological dose of orally administered melatonin shifts circadian rhythms in humans according to a phase-response curve (PRC) that is nearly opposite in phase with the PRCs for light exposure: melatonin delays circadian rhythms when administered in the morning and advances them when administered in the afternoon or early evening. The human melatonin PRC provides critical information for using melatonin to treat circadian phase sleep and mood disorders, as well as maladaptation to shift work and transmeridional air travel. The human melatonin PRC also provides the strongest evidence to date for a function of endogenous melatonin and its suppression by light in augmenting entrainment of circadian rhythms by the light-dark cycle.  相似文献   

13.
Melatonin concentration and core body temperature (CBT) follow endogenous circadian biological rhythms. In the evening, melatonin level increases and CBT decreases. These changes are involved in the regulation of the sleep-wake cycle. Therefore, the authors hypothesized that age-related changes in these rhythms affect sleep quality in older people. In a cross-sectional study design, 11 older poor-sleeping women (aged 62-72 yrs) and 9 older good-sleeping women (60-82 yrs) were compared with 10 younger good-sleeping women (23-28 yrs). The older groups were matched by age and body mass index. Sleep quality was assessed by the Pittsburgh Sleep Quality Index questionnaire. As an indicator of CBT, oral temperature was measured at 1-h intervals from 17:00 to 24:00?h. At the same time points, saliva samples were collected for determining melatonin levels by enzyme-linked immunosorbent assay (ELISA). The dim light melatonin onset (DLMO), characterizing the onset of melatonin production, was calculated. Evening changes in melatonin and CBT levels were tested by the Friedman test. Group comparisons were performed with independent samples tests. Predictors of sleep-onset latency (SOL) were assessed by regression analysis. Results show that the mean CBT decreased in the evening from 17:00 to 24:00?h in both young women (from 36.57°C to 36.25°C, p < .001) and older women (from 36.58°C to 35.88°C, p < .001), being lowest in the older poor sleepers (p < .05). During the same time period, mean melatonin levels increased in young women (from 16.2 to 54.1 pg/mL, p < .001) and older women (from 10.0 to 23.5 pg/mL, p < .001), being lowest among the older poor sleepers (from 20:00 to 24:00?h, p < .05 vs. young women). Older poor sleepers also showed a smaller increase in melatonin level from 17:00 to 24:00?h than older good sleepers (mean?±?SD: 7.0?±?9.63 pg/mL vs. 15.6?±?24.1 pg/mL, p = .013). Accordingly, the DLMO occurred at similar times in young (20:10?h) and older (19:57?h) good-sleeping women, but was delayed ~50?min in older poor-sleeping women (20:47?h). Older poor sleepers showed a shorter phase angle between DLMO and sleep onset, but a longer phase angle between CBT peak and sleep onset than young good sleepers, whereas older good sleepers had intermediate phase angles (insignificant). Regression analysis showed that the DLMO was a significant predictor of SOL in the older women (R(2)?=?0.64, p < .001), but not in the younger women. This indicates that melatonin production started later in those older women who needed more time to fall asleep. In conclusion, changes in melatonin level and CBT were intact in older poor sleepers in that evening melatonin increased and CBT decreased. However, poor sleepers showed a weaker evening increase in melatonin level, and their DLMO was delayed compared with good sleepers, suggesting that it is not primarily the absolute level of endogenous melatonin, but rather the timing of the circadian rhythm in evening melatonin secretion that might be related to disturbances in the sleep-wake cycle in older people.  相似文献   

14.
It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine whether a single sequence of brief bright light pulses administered during the early biological night would phase delay the human circadian pacemaker. Twenty-one healthy young subjects underwent a 6.5-h light exposure session in one of three randomly assigned conditions: 1) continuous bright light of approximately 9,500 lux, 2) intermittent bright light (six 15-min bright light pulses of approximately 9,500 lux separated by 60 min of very dim light of <1 lux), and 3) continuous very dim light of <1 lux. Twenty subjects were included in the analysis. Core body temperature (CBT) and melatonin were used as phase markers of the circadian pacemaker. Phase delays of CBT and melatonin rhythms in response to intermittent bright light pulses were comparable to those measured after continuous bright light exposure, even though the total exposure to the intermittent bright light represented only 23% of the 6.5-h continuous exposure. These results demonstrate that a single sequence of intermittent bright light pulses can phase delay the human circadian pacemaker and show that intermittent pulses have a greater resetting efficacy on a per minute basis than does continuous exposure.  相似文献   

15.
Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18–24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a “constant routine” protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions.  相似文献   

16.
Melatonin rhythms in delayed sleep phase syndrome   总被引:5,自引:0,他引:5  
The aim of this study was to compare circadian and sleep characteristics between patients with delayed sleep phase syndrome (DSPS) and healthy controls. The authors studied 8 DSPS patients and 15 normal controls. Serum melatonin concentration was assessed every hour for 24 h under dim light conditions. The sleep phase and the melatonin rhythm in DSPS patients were significantly delayed compared to those in normal controls. Sleep length was significantly greater in DSPS patients compared to that in controls, but the duration of melatonin secretion did not differ between the two groups. The final awakening, relative to melatonin onset, melatonin midpoint, and melatonin offset, was significantly longer in DSPS patients than in controls. By contrast, the timing of sleep onset relative to melatonin rhythm did not differ between the two groups. The authors found a significant positive correlation between sleep phase markers and melatonin phase markers in DSPS. They postulate that a delayed circadian pacemaker may be responsible for delayed sleep phase syndrome. The alteration of phase angle between melatonin rhythm and sleep phase suggested that not only the delay of the circadian clock but also a functional disturbance of the sleep-wake mechanism underlies DSPS.  相似文献   

17.
Both recumbency and sleep affect core body temperature (CBT). To characterize their circadian effects and interactions, the authors examined the bedtime temperature drops (TDs) of nine men and eight women (aged 20 to 30) who repeated 90-min sleep-wake cycles over 2.5 days. While awake, subjects were exposed to 50 to 250 lux; while asleep, lights were off. Electroencephalogram-monitored time inbed lasted 30 min during each cycle. Cosinor nonlinear mixed-effects regressions modeled the circadian rhythm of TDs. The circadian maximum of TDs occurred approximately 4 h before the time of circadian CBT minimum, in a model that included the effects of baseline expected CBT, deviations from baseline CBT, time in study, and gender-dependent 24- and 12-h adjustments. Rates of temperature drops were faster during initial periods of lying awake than during periods of initially sleeping. Both rates followed separate circadian rhythms. The circadian maximum of TDs was located near customary nocturnal bedtimes, suggesting its role in fostering sleep during a normal bedtime routine. The apparent deceleration of temperature dropping at sleep onset supports the notion that the sleep onset period has complicated circadian neuroregulatory dynamics. These findings confirm the need for nonlinear models of temperature responses to postural changes and sleep that incorporate circadian variability in these masking effects.  相似文献   

18.
Although light is considered the primary entrainer of circadian rhythms in humans, nonphotic stimuli, including exercise and melatonin also phase shift the biological clock. Furthermore, in birds and nonhuman mammals, auditory stimuli are effective zeitgebers. This study investigated whether a nonphotic auditory stimulus phase shifts human circadian rhythms. Ten subjects (5 men and 5 women, ages 18-72, mean age +/- SD, 44.7 +/- 21.4 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h auditory or control stimulus from 0100 to 0300 on the second and third nights (presentation order of the stimulus and control was counterbalanced). Core body temperature (CBT) was collected and stored in 2-min bins throughout the study and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Circadian phase of dim light melatonin onset (DLMO) and of CBT minimum, before and after auditory or control presentation was assessed. The auditory stimulus produced significantly larger phase delays of the circadian melatonin (mean +/- SD, -0.89 +/- 0.40 h vs. -0.27 +/- 0.16 h) and CBT (-1.16 +/- 0.69 h vs. -0.44 +/- 0.27 h) rhythms than the control. Phase changes for the two circadian rhythms also positively correlated, indicating direct effects on the biological clock. In addition, the auditory stimulus significantly decreased fatigue compared with the control. This study is the first demonstration of an auditory stimulus phase-shifting circadian rhythms in humans, with shifts similar in size and direction to those of other nonphotic stimuli presented during the early subjective night. This novel stimulus may be a useful countermeasure to facilitate circadian adaptation after transmeridian travel or shift work.  相似文献   

19.
Shift workers and transmeridian travelers are exposed to abnormal work-rest cycles, inducing a change in the phase relationship between the sleep-wake cycle and the endogenous circadian timing system. Misalignment of circadian phase is associated with sleep disruption and deterioration of alertness and cognitive performance. Exercise has been investigated as a behavioral countermeasure to facilitate circadian adaptation. In contrast to previous studies where results might have been confounded by ambient light exposure, this investigation was conducted under strictly controlled very dim light (standing approximately 0.65 lux; angle of gaze) conditions to minimize the phase-resetting effects of light. Eighteen young, fit males completed a 15-day randomized clinical trial in which circadian phase was measured in a constant routine before and after exposure to a week of nightly bouts of exercise or a nonexercise control condition after a 9-h delay in the sleep-wake schedule. Plasma samples collected every 30-60 min were analyzed for melatonin to determine circadian phase. Subjects who completed three 45-min bouts of cycle ergometry each night showed a significantly greater shift in the dim light melatonin onset (DLMO(25%)), dim light melatonin offset, and midpoint of the melatonin profile compared with nonexercising controls (Student t-test; P < 0.05). The magnitude of phase delay induced by the exercise intervention was significantly dependent on the relative timing of the exercise after the preintervention DLMO(25%) (r = -0.73, P < 0.05) such that the closer to the DLMO(25%), the greater the phase shift. These data suggest that exercise may help to facilitate circadian adaptation to schedules requiring a delay in the sleep-wake cycle.  相似文献   

20.
Introduction: The efficacy of bright light and/or melatonin treatment for Delayed Sleep Wake Phase Disorder (DSWPD) is contingent upon an accurate clinical assessment of the circadian phase. However, the process of determining this circadian phase can be costly and is not yet readily available in the clinical setting. The present study investigated whether more cost-effective and convenient estimates of the circadian phase, such as self-reported sleep timing, can be used to predict the circadian phase and guide the timing of light and/or melatonin treatment (i.e. dim-light melatonin onset, core body temperature minimum and melatonin secretion mid-point) in a sample of individuals with DSWPD. Method: Twenty-four individuals (male = 17; mean age = 21.96, SD = 5.11) with DSWPD were selected on the basis of ICSD-3 criteria from a community-based sample. The first 24-hours of a longer 80-hour constant laboratory ultradian routine were used to determine core body temperature minimum (cBTmin), dim-light melatonin onset (DLMO) and the midpoint of the melatonin secretion period (DLMmid = [DLM°ff–DLMO]/2). Prior to the laboratory session subjective sleep timing was assessed using a 7-day sleep/wake diary, the Pittsburgh Sleep Quality Index (PSQI), and the Delayed Sleep Phase Disorder Sleep Timing Questionnaire (DSPD-STQ). Results: Significant moderate to strong positive correlations were observed between self-reported sleep timing variables and DLMO, cBTmin and DLMmid. Regression equations revealed that the circadian phase (DLMO, cBTmin and DLMmid) was estimated within ±1.5 hours of the measured circadian phase most accurately by the combination of sleep timing measures (88% of the sample) followed by sleep diary reported midsleep (83% of the sample) and sleep onset time (79% of the sample). Discussion: These findings suggest that self-reported sleep timing may be useful clinically to predict a therapeutically relevant circadian phase in DSWPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号