首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of molecular biology》2019,431(9):1818-1829
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with clear similarities regarding their clinical, genetic and pathological features. Both are progressive, lethal disorders, with no current curative treatment available. Several genes that correlated with ALS and FTD are implicated in the same molecular pathways. Strikingly, many of these genes are not exclusively expressed in neurons, but also in glial cells, suggesting a multicellular pathogenesis. Moreover, chronic inflammation is a common feature observed in ALS and FTD, indicating an essential role of microglia, the resident immune cells of the central nervous system, in disease development and progression. In this review, we will provide a comprehensive overview of the implications of microglia in ALS and FTD. Specifically, we will focus on the role of impaired phagocytosis and increased inflammatory responses and their impact on microglial function. Several genes associated with the disorders can directly be linked to microglial activation, phagocytosis and neuroinflammation. Other genes associated with the disorders are implicated in biological pathways involved in protein degradation and autophagy. In general such mutations have been shown to cause abnormal protein accumulation and impaired autophagy. These impairments have previously been linked to affect the innate immune system in the central nervous system through inappropriate activation of microglia and neuroinflammation, highlighted in this review. Although it has been well established that microglia play essential roles in neurodegenerative disorders, the precise underlying mechanisms remain to be elucidated.  相似文献   

2.
There is increasing clinical, imaging and neurophatological evidence that amyotrophic lateral sclerosis (ALS) represents a multisystem neurodegenerative disease. Neurodegeneration is not restricted to motor neurons, but also includes parts of the brain other than the motor cortex, especially the prefrontal and/or anterior temporal lobe, that contribute to the clinical syndrome. In some cases an evident dementia that resembles frontotemporal degeneration (FTD) was observed. It is now suggested that ALS and FTD are closely related conditions with overlapping clinical, pathological, radiological, and genetic characteristics. The presence of a frontal dementia in ALS has also crucial practical consequences for management of the patients, whose disorder requires critical life decisions for enteral nutrition and respiratory complications. It is our intent to provide a brief overview of the relationships between ALS and FTD.  相似文献   

3.
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have been investigated in a single neurodegenerative disease manifesting as either amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD) alone, but have not been examined in combined disorders such as ALS with FTD (ALS-FTD). To our knowledge, this study is the first attempt to demonstrate relationship between MRI abnormalities and MR spectroscopic metabolite changes of the motor cortex, frontal white matter and corticospinal tract in a patient with the diagnosis of ALS with probable upper motor neuron signs (ALS-PUMNS) and FTD. Patient presented underwent MRI of the brain and MRS. The ratio of N-acetylaspartate (NAA) to creatine (Cr), choline to Cr, myo-inositol (ml) to Cr and glutamate-glutamine (Glx) to Cr were derived from peak area measurement. Spectra from the right motor cortex, frontal white matter and corticospinal tract were obtained. MR images were evaluated for sulcus centralis enlargement, corticospinal tract hyperintensity and frontal lobes atrophy. Spectra showed reduced NAA/Cr and Glx/Cr ratio, yet the ratio of Cho/Cr exhibited significant elevation. MR images revealed sulcus centralis enlargement, high signal intensity of corticospinal tract and atrophy of both frontal lobes. Proton spectroscopic metabolic changes in a current patient fully correlate with previously reported MRS metabolic changes in ALS alone. Surprisingly, normal ml (glial marker) values have been found in almost all measured voxels of interest except in the frontal white matter. These findings differ from the previous findings in ALS or FTD alone. In conclusion, these findings support the concept that ALS, FTD and ALS-FTD may represent different manifestations of a single pathological continuum.  相似文献   

4.
《朊病毒》2013,7(2):90-109
Abstract

Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.  相似文献   

5.
Parkinson's disease (PD) is known as a progressive neurodegenerative disorder associated with the reduction of dopamine-secreting neurons and the formation of Lewy bodies in the substantia nigra and basal ganglia routes. Aging, as well as environmental and genetic factors, are considered as disease risk factors that can make PD as a complex one. Epigenetics means studying heritable changes in gene expression or function, without altering the underlying DNA sequence. Multiple studies have shown the association of epigenetic variations with onset or progression of various types of diseases. DNA methylation, posttranslational modifications of histones and presence of microRNA (miRNA) are among epigenetic processes involved in regulating pathways related to the development of PD. Unlike genetic mutations, most epigenetic variations may be reversible or preventable. Therefore, the return of aberrant epigenetic events in different cells is a growing therapeutic approach to treatment or prevention. Currently, there are several methods for treating PD patients, the most important of which are drug therapies. However, detection of genes and epigenetic mechanisms involved in the disease can develop appropriate diagnosis and treatment of the disease before the onset of disabilities and resulting complications. The main purpose of this study was to review the most important epigenetic molecular mechanisms, epigenetic variations in PD, and epigenetic-based therapies.  相似文献   

6.
7.
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative multifactorial disease characterized, like other diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) or frontotemporal dementia (FTD), by the degeneration of specific neuronal cell populations. Motor neuron loss is distinctive of ALS. However, the causes of onset and progression of motor neuron death are still largely unknown. In about 2% of all cases, mutations in the gene encoding for the Cu/Zn superoxide dismutase (SOD1) are implicated in the disease. Several alterations in the expression or activation of cell cycle proteins have been described in the neurodegenerative diseases and related to cell death. In this work we show that mutant SOD1 can alter cell cycle in a cellular model of ALS. Our findings suggest that modifications in the cell cycle progression could be due to an increased interaction between mutant G93A SOD1 and Bcl-2 through the cyclins regulator p27. As previously described in post mitotic neurons, cell cycle alterations could fatally lead to cell death.  相似文献   

8.
9.
There is increasing evidence that amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) lie on a clinical, pathological and genetic continuum with patients of one disease exhibiting features of the other. Nevertheless, to date, the underlying grey matter and white matter changes across the ALS-FTD disease continuum have not been explored. In this study fifty-three participants with ALS (n = 10), ALS-FTD (n = 10) and behavioural variant FTD (bvFTD; n = 15) as well as controls (n = 18), underwent detailed clinical assessment plus structural imaging using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis of magnetic resonance brain imaging to examine grey and white matter differences and commonalities across the continuum. Importantly, patient groups were matched for age, education, gender and disease duration. VBM and DTI results showed that changes in the ALS group were confined mainly to the motor cortex and anterior cingulate as well as their underlying white matter tracts. ALS-FTD and bvFTD showed widespread grey matter and white matter changes involving frontal and temporal lobes. Extensive prefrontal cortex changes emerged as a marker for bvFTD compared to other subtypes, while ALS-FTD could be distinguished from ALS by additional temporal lobe grey and white matter changes. Finally, ALS could be mainly distinguished from the other two groups by corticospinal tract degeneration. The present study shows for the first time that FTD and ALS overlap in anterior cingulate, motor cortex and related white matter tract changes across the whole continuum. Nevertheless, frontal and temporal atrophy as well as corticospinal tract degeneration emerged as marker for subtype classification, which will inform future diagnosis and target disease management across the continuum.  相似文献   

10.
FTD and ALS: genetic ties that bind   总被引:1,自引:0,他引:1  
Orr HT 《Neuron》2011,72(2):189-190
Curiously, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), seemingly disparate neurodegenerative disorders, can be inherited together. Two groups (DeJesus-Hernandez et?al. and Renton et?al.) show that the long sought after ALS/FTD mutation on chromosomal region 9p is a hexanucleotide expansion in C90RF72. These studies, plus a study on X-linked ALS/FTD, provide molecular starting points for identifying pathways that link ALS and FTD pathogenesis.  相似文献   

11.
Parkinson disease (PD) is a multifactorial neurodegenerative disorder with high incidence in the elderly, where environmental and genetic factors are involved in etiology. In addition, epigenetic mechanisms, including deregulation of DNA methylation have been recently associated to PD. As accurate diagnosis cannot be achieved pre-mortem, identification of early pathological changes is crucial to enable therapeutic interventions before major neuropathological damage occurs. Here we investigated genome-wide DNA methylation in brain and blood samples from PD patients and observed a distinctive pattern of methylation involving many genes previously associated to PD, therefore supporting the role of epigenetic alterations as a molecular mechanism in neurodegeneration. Importantly, we identified concordant methylation alterations in brain and blood, suggesting that blood might hold promise as a surrogate for brain tissue to detect DNA methylation in PD and as a source for biomarker discovery.  相似文献   

12.
Protein misfolding is implicated in numerous lethal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD). There are no therapies that reverse these protein-misfolding events. We aim to apply Hsp104, a hexameric AAA+ protein from yeast, to target misfolded conformers for reactivation. Hsp104 solubilizes disordered aggregates and amyloid, but has limited activity against human neurodegenerative disease proteins. Thus, we have previously engineered potentiated Hsp104 variants that suppress aggregation, proteotoxicity and restore proper protein localization of ALS and PD proteins in Saccharomyces cerevisiae, and mitigate neurodegeneration in an animal PD model. Here, we establish that potentiated Hsp104 variants possess broad substrate specificity and, in yeast, suppress toxicity and aggregation induced by wild-type TDP-43, FUS and α-synuclein, as well as missense mutant versions of these proteins that cause neurodegenerative disease. Potentiated Hsp104 variants also rescue toxicity and aggregation of TAF15 but not EWSR1, two RNA-binding proteins with a prion-like domain that are connected with the development of ALS and frontotemporal dementia. Thus, potentiated Hsp104 variants are not entirely non-specific. Indeed, they do not unfold just any natively folded protein. Rather, potentiated Hsp104 variants are finely tuned to unfold proteins bearing short unstructured tracts that are not recognized by wild-type Hsp104. Our studies establish the broad utility of potentiated Hsp104 variants.KEY WORDS: FUS, Hsp104, TDP-43, α-synuclein, Disaggregase, Neurodegeneration  相似文献   

13.
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.  相似文献   

14.

In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer’s disease, Parkinson’s disease and, Huntington’s disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson’s Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.

  相似文献   

15.
Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease.  相似文献   

16.
Xylella fastidiosa is a xylem-limited bacterium that causes various diseases, among them Pierce's disease of grapevine (PD) and almond leaf scorch (ALS). PD and ALS have long been considered to be caused by the same strain of this pathogen, but recent genetic studies have revealed differences among X. fastidiosa isolated from these host plants. We tested the hypothesis that ALS is caused by PD and ALS strains in the field and found that both groups of X. fastidiosa caused ALS and overwintered within almonds after mechanical inoculation. Under greenhouse conditions, all isolates caused ALS and all isolates from grapes caused PD. However, isolates belonging to almond genetic groupings did not cause PD in inoculated grapes but systemically infected grapes with lower frequency and populations than those belonging to grape strains. Isolates able to cause both PD and ALS developed 10-fold-higher concentrations of X. fastidiosa in grapes than in almonds. In the laboratory, isolates from grapes overwintered with higher efficiency in grapes than in almonds and isolates from almonds overwintered better in almonds than in grapes. We assigned strains from almonds into groups I and II on the basis of their genetic characteristics, growth on PD3 solid medium, and bacterial populations within inoculated grapevines. Our results show that genetically distinct strains from grapes and almonds differ in population behavior and pathogenicity in grapes and in the ability to grow on two different media.  相似文献   

17.
Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72. As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS‐FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre‐mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that share genetic risk factors and pathological hallmarks. Intriguingly, these shared factors result in a high rate of comorbidity of these diseases in patients. Intracellular protein aggregates are a common pathological hallmark of both diseases. Emerging evidence suggests that impaired RNA processing and disrupted protein homeostasis are two major pathogenic pathways for these diseases. Indeed, recent evidence from genetic and cellular studies of the etiology and pathogenesis of ALS-FTD has suggested that defects in autophagy may underlie various aspects of these diseases. In this review, we discuss the link between genetic mutations, autophagy dysfunction, and the pathogenesis of ALS-FTD. Although dysfunction in a variety of cellular pathways can lead to these diseases, we provide evidence that ALS-FTD is, in many cases, an autophagy disease.  相似文献   

19.
Biomarkers of neurodegenerative disorders: How good are they?   总被引:11,自引:0,他引:11  
Rachakonda V  Pan TH  LE WD 《Cell research》2004,14(5):347-358
Biomarkers are very important indicators of normal and abnormal biological processes. Specific changes in pathologies,biochemistries and genetics can give us comprehensive information regarding the nature of any particular disease. A good biomarker should be precise and reliable, distinguishable between normal and interested disease, and differentiable between different diseases. It is believed that biomarkers have great potential in predicting chances for diseases, aiding in early diagnosis, and setting standards for the development of new remedies to treat diseases. New technologies have enabled scientists to identify biomarkers of several different neurodegenerative diseases. The followings, for instance,are only a few of the many new biomarkers that have been recently identified: the phosphorylated tau protein and aggregated β-amyloid peptide for Alzheimer‘s disease (AD), α-synuclein contained Lewy bodies and altered dopamine transporter (DAT) imaging for Parkinson‘s disease (PD), SOD mutations for familial amyotrophic lateral sclerosis (ALS), and CAG repeats resulted from Huntington‘s gene mutations in Huntington‘s disease (HD). This article will focus on the most-recent findings of biomarkers belonging to the four mentioned neurodegenerative diseases.  相似文献   

20.
Frontotemporal dementia (FTD) is the second commonest young-onset neurodegenerative dementia. The canonical clinical syndromes are a behavioural variant (bvFTD) and two language variants (progressive nonfluent aphasia, PNFA, and semantic dementia, SD) although there is overlap with motor neurone disease and the atypical parkinsonian disorders corticobasal syndrome (CBS) and progressive supranuclear palsy syndrome (PSPS). Characteristic patterns of atrophy or hypometabolism are described in each of the variants but in reality imaging studies are rather heterogeneous. This review attempts to address four key questions in the neuroimaging of FTD: 1) what are the early imaging features of the different FTD syndromes (and how do these change as the disease progresses); 2) what do studies of presymptomatic genetic cases of FTD tell us about the very early stages of the disease; 3) can neuroimaging help to differentiate the different FTD syndromes; and 4) can neuroimaging help to differentiate FTD from other neurodegenerative diseases? This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号