首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正二十面体和二十面体对称病毒   总被引:2,自引:0,他引:2  
本文从结晶学和拓扑学角度出发,分析了正二十面体的结构特征,并分别阐述了二十面体对称病毒的“准晶体构筑的二十面体原理”和二十面体上的点与球面上的点的拓扑等价关系.并且,在可单纯剖分的基础上,对其二十面体病毒的拓扑表面和三角形剖分数给予了详细的描述.  相似文献   

2.
3.
4.
5.
本项研究从多学科的不同角度出发,对正廿面体病毒衣壳参数进行了深入研究.整理和开发出衣壳参数50多个,对其每一个参数的概念、含义、来源、参数值和参数间的关系作了明确的认定,并阐述了衣壳参数的理论意义及其应用价值.  相似文献   

6.
Intrapatient evolution of human immunodeficiency virus type 1 (HIV-1) is driven by the adaptive immune system resulting in rapid change of HIV-1 proteins. When cytotoxic CD8+ T cells or neutralizing antibodies target a new epitope, the virus often escapes via nonsynonymous mutations that impair recognition. Synonymous mutations do not affect this interplay and are often assumed to be neutral. We test this assumption by tracking synonymous mutations in longitudinal intrapatient data from the C2-V5 part of the env gene. We find that most synonymous variants are lost even though they often reach high frequencies in the viral population, suggesting a cost to the virus. Using published data from SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) assays, we find that synonymous mutations that disrupt base pairs in RNA stems flanking the variable loops of gp120 are more likely to be lost than other synonymous changes: these RNA hairpins might be important for HIV-1. Computational modeling indicates that, to be consistent with the data, a large fraction of synonymous mutations in this genomic region need to be deleterious with a cost on the order of 0.002 per day. This weak selection against synonymous substitutions does not result in a strong pattern of conservation in cross-sectional data but slows down the rate of evolution considerably. Our findings are consistent with the notion that large-scale patterns of RNA structure are functionally relevant, whereas the precise base pairing pattern is not.  相似文献   

7.
The small size of RNA virus genomes (2-to-32 kb) has been attributed to high mutation rates during replication, which is thought to lack proof-reading. This paradigm is being revisited owing to the discovery of a 3′-to-5′ exoribonuclease (ExoN) in nidoviruses, a monophyletic group of positive-stranded RNA viruses with a conserved genome architecture. ExoN, a homolog of canonical DNA proof-reading enzymes, is exclusively encoded by nidoviruses with genomes larger than 20 kb. All other known non-segmented RNA viruses have smaller genomes. Here we use evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome was accompanied by a large number of replacements in conserved proteins at a scale comparable to that in the Tree of Life. To unravel common evolutionary patterns in such genetically diverse viruses, we established the relation between genomic regions in nidoviruses in a sequence alignment-free manner. We exploited the conservation of the genome architecture to partition each genome into five non-overlapping regions: 5′ untranslated region (UTR), open reading frame (ORF) 1a, ORF1b, 3′ORFs (encompassing the 3′-proximal ORFs), and 3′ UTR. Each region was analyzed for its contribution to genome size change under different models. The non-linear model statistically outperformed the linear one and captured >92% of data variation. Accordingly, nidovirus genomes were concluded to have reached different points on an expansion trajectory dominated by consecutive increases of ORF1b, ORF1a, and 3′ORFs. Our findings indicate a unidirectional hierarchical relation between these genome regions, which are distinguished by their expression mechanism. In contrast, these regions cooperate bi-directionally on a functional level in the virus life cycle, in which they predominantly control genome replication, genome expression, and virus dissemination, respectively. Collectively, our findings suggest that genome architecture and the associated region-specific division of labor leave a footprint on genome expansion and may limit RNA genome size.  相似文献   

8.
影响鼻疽伯克霍尔德氏菌基因组密码子用法的因素分析   总被引:1,自引:0,他引:1  
鼻疽伯克霍尔德氏菌(Burkholderia mallei ATCC 23344)的基因组密码子使用受多种因素的影响,本研究根据该菌的完整基因组序列,运用多元统计分析和对应分析的方法,探讨了鼻疽伯克霍尔德氏菌全基因组序列密码子的使用模式和影响密码子使用的因素。结果表明基因表达水平的高低是影响密码子使用的主要因素;基因组中编码区的碱基组成、蛋白质的疏水性和基因的长度对密码子的使用也有一定的影响,但影响力不及基因的表达水平。同时,通过比较高表达的基因、低表达的基因密码子使用情况,GCG 和 CUC 等 21 个密码子被确定为鼻疽伯克霍尔德氏菌的主要偏爱密码子。以上结果对鼻疽伯克霍尔德氏菌的密码子用法研究、在分子水平上研究物种进化、基因组中未知基因的预测、开放阅读框的判断、功能基因的表达以及鼻疽病疫苗的研发等工作都提供了理论基础,具有较强的指导作用。  相似文献   

9.
Study of the possibilities of virions and viral proteins modifications and structural remodeling is an important problem of the modern molecular virology. A technique of heat treatment of rod-shaped tobacco mosaic virus that allowed producing structurally modified spherical particles consisting of the virus coat protein was previously developed in our laboratory. These particles possessed unique adsorption and immunogenic properties and were successfully used to develop a new candidate vaccine against rubella virus. Later, the possibility of thermal remodeling of the filamentous virions of potato virus X was demonstrated. The present work reports a comparative study of thermal remodeling of viruses with different structure belonging to various taxonomic groups. The generation of structurally modified spherical particles by the heat treatment of rod-shaped virions with helical symmetry (dolichos enation mosaic virus and barley stripe mosaic virus) has been demonstrated. The dependence of the size of spherical particles derived from dolichos enation mosaic virus on the initial virus concentration was revealed. The process of thermal remodeling of the filamentous virions and virus-like particles of alternanthera mosaic virus was studied. Heat treatment of plant viruses with icosahedral symmetry was shown to cause no morphological changes.  相似文献   

10.
We have sequenced the genome and identified the structural proteins and lipids of the novel membrane-containing, icosahedral virus P23-77 of Thermus thermophilus. P23-77 has an ∼17-kb circular double-stranded DNA genome, which was annotated to contain 37 putative genes. Virions were subjected to dissociation analysis, and five protein species were shown to associate with the internal viral membrane, while three were constituents of the protein capsid. Analysis of the bacteriophage genome revealed it to be evolutionarily related to another Thermus phage (IN93), archaeal Halobacterium plasmid (pHH205), a genetic element integrated into Haloarcula genome (designated here as IHP for integrated Haloarcula provirus), and the Haloarcula virus SH1. These genetic elements share two major capsid proteins and a putative packaging ATPase. The ATPase is similar with the ATPases found in the PRD1-type viruses, thus providing an evolutionary link to these viruses and furthering our knowledge on the origin of viruses.Three-dimensional structures of the major capsid proteins, as well as the architecture of the virion and the sequence similarity of putative genome packaging ATPases, have revealed unexpected evolutionary connection between virus families. Viruses infecting hosts residing in different domains of life (Bacteria, Archaea, and Eukarya) share common structural elements and possibly also ways to package the viral genome (8, 13, 41). It has been proposed that the set of genes responsible for virion assembly is a hallmark of the virus and is designated as the innate viral “self,” which may retain its identity through evolutionary times (5). Based on this, it is proposed that viruses can be classified into lineages that span the different domains of life. Therefore, the studies of new virus isolates might provide insights into the events that led to the origin of viruses and maybe even the origin of life itself (34, 40). However, viruses are known to be genetic mosaics (28), and these structural lineages therefore do not reflect the evolutionary history of all genes in a given virus. For example, the genome replication strategies vary significantly even in the currently established lineages (41) and, consequently, a structural approach does not point out to a specific form of replication in the ancestor. Nevertheless, as the proposal for a viral self is driven from information on viral structures and pathways of genome encapsidation, the ancestral form of the self was likely to be composed of a protective coat and the necessary mechanisms to incorporate the genetic material within the coat.Viruses structurally related to bacteriophage PRD1, a phage infecting gram-negative bacteria, have been identified in all three domains of life, and the lineage hypothesis was first proposed based on structural information on such viruses. Initially, PRD1 and human adenovirus were proposed to originate from a common ancestor mainly due to the same capsid organization (T=25) and the major coat protein topology, the trimeric double β-barrel fold (12). In addition, these viruses share a common vertex organization and replication mechanism (20, 31, 53, 63). PRD1 is an icosahedral virus with an inner membrane, whereas adenovirus lacks the membrane. Later, many viruses with similar double β-barrel fold in the major coat protein have been discovered and included to this viral lineage. For example, the fold is present in Paramecium bursaria Chlorella virus 1 (56) of algae, Bam35 (45) of gram-positive bacteria, PM2 (2) of gram-negative marine bacteria, and Sulfolobus turreted icosahedral virus (STIV) (38) of an archaeal host. Moreover, genomic analyses have revealed a common set of genes in a number of nucleocytoplasmic large DNA viruses. Chilo iridescent virus and African swine fever virus 1 are related to Paramecium bursaria Chlorella virus 1 and most probably share structural similarity to PRD1-type viruses (13, 30, 31, 68). The largest known viruses, represented by mimivirus and poxvirus, may also belong to this lineage (29, 77). Two euryarchaeal proviruses, TKV4 and MVV, are also proposed to belong to this lineage based on bioinformatic searches (42). The proposed PRD1-related viruses share the same basic architectural principles despite major differences in the host organisms and particle and genome sizes (1, 2, 38, 56). PM2, for example, has a genome of only 10 kbp, whereas mimivirus (infecting Acanthamoeba polyphaga) double-stranded DNA (dsDNA) genome is 1.2 Mbp in size (59).How many virion structure-based lineages might there be? This obviously relates to the number of protein folds that have the properties needed to make viral capsids. It has been noted that, in addition to PRD1-type viruses, at least tailed bacterial and archaeal viruses, as well as herpesviruses, share the same coat protein fold. Also, certain dsRNA viruses seem to have structural and functional similarities, although their hosts include bacteria and yeasts, as well as plants and animals (6, 18, 19, 27, 55, 60, 74). Obviously, many structural principles to build a virus capsid exist, and it has been suggested that especially geothermally heated environments have preserved many of the anciently formed virus morphotypes (35).Thermophilic dsDNA bacteriophage P23-77 was isolated from an alkaline hot spring in New Zealand on Thermus thermophilus (17) ATCC 33923 (deposited as Thermus flavus). P23-77 was shown to have an icosahedral capsid and possibly an internal membrane but no tail (81). Previously, another Thermus virus, IN93, with a similar morphology has been described (50). IN93 was inducible from a lysogenic strain of Thermus aquaticus TZ2, which was isolated from hot spring soil in Japan. Recently, P23-77 was characterized in more detail (33). It has an icosahedral protein coat, organized in a T=28 capsid lattice (21). The presence of an internal membrane was confirmed, and lipids were shown to be constituents of the virion. Ten structural proteins were identified, with apparent molecular masses ranging from 8 to 35 kDa. Two major protein species with molecular masses of 20 and 35 kDa were proposed to make the capsomers, one forming the hexagonal building blocks and the other the two towers that decorate the capsomer bases (33). Surprisingly, P23-77 is structurally closest to the haloarchaeal virus SH1, which is the only other example of a T=28 virion architecture (32, 33). In both cases it was proposed that the capsomers are made of six single β-barrels opposing the situation with the other structurally related viruses where the hexagonal capsomers are made of three double β-barrel coat protein monomers (8).In the present study we analyze the dsDNA genome of P23-77. Viral membrane proteins and those associated with the capsid were identified by virion dissociation studies. The protein chemistry data and genome annotation are consistent with the results of the disruption studies. A detailed analysis of the lipid composition of P23-77 and its T. thermophilus host was carried out. The data collected here reveal additional challenges in attempts to generate viral lineages based on the structural and architectural properties of the virion.  相似文献   

11.
The length of the single stranded, negative sense RNA genome of measles virus (MeV) is highly conserved at 15,894 nucleotides (nt). MeVs can be grouped into 24 genotypes based on the highly variable 450 nucleotides coding for the carboxyl-terminus of the nucleocapsid protein (N-450). Here, we report the genomic sequences of 2 wild-type viral isolates of genotype D4 with genome lengths of 15,900 nt. Both genomes had a 7 nt insertion in the 3′ untranslated region (UTR) of the matrix (M) gene and a 1 nt deletion in the 5′ UTR of the fusion (F) gene. The net gain of 6 nt complies with the rule-of-six required for replication competency of the genomes of morbilliviruses. The insertions and deletion (indels) were confirmed in a patient sample that was the source of one of the viral isolates. The positions of the indels were identical in both viral isolates, even though epidemiological data and the 3 nt differences in N-450 between the two genomes suggested that the viruses represented separate chains of transmission. Identical indels were found in the M-F intergenic regions of 14 additional genotype D4 viral isolates that were imported into the US during 2007–2010. Viral isolates with and without indels produced plaques of similar size and replicated efficiently in A549/hSLAM and Vero/hSLAM cells. This is the first report of wild-type MeVs with genome lengths other than 15,894 nt and demonstrates that the length of the M-F UTR of wild-type MeVs is flexible.  相似文献   

12.
本文根据形态计量学原理,对正廿面体病毒的圆球度进行了推导和计算.同时揭示了病毒内部各种等效球间的关系是按等比级数排列的,其比值近似等于廿面体圆球度(Φ),即0.9552.  相似文献   

13.
14.
15.
16.
Mutations of Bacterial Viruses Affecting Their Host Range   总被引:19,自引:0,他引:19  
Luria SE 《Genetics》1945,30(1):84-99
  相似文献   

17.
A specific index of nucleotide sequence redundancy, the specific restriction length of a finite frequency dictionary, was determined for a complete set of genes in some viral genomes and a genome of a bacterium, Bacillus subtilis. The distribution of the gene number over the specific restriction length was shown to be bimodal for viral genomes and unimodal for the Bac. subtilis genome. These results agree with earlier data.  相似文献   

18.
19.
Influenza viruses routinely acquire mutations in antigenic sites on the globular head of the hemagglutinin (HA) protein. Since these antigenic sites are near the receptor binding pocket of HA, many antigenic mutations simultaneously alter the receptor binding properties of HA. We previously reported that a K165E mutation in the Sa antigenic site of A/Puerto Rico/8/34 (PR8) HA is associated with secondary neuraminidase (NA) mutations that decrease NA activity. Here, using reverse genetics, we show that the K165E HA mutation dramatically decreases HA binding to sialic acid receptors on cell surfaces. We sequentially passaged reverse-genetics-derived PR8 viruses with the K165E antigenic HA mutation in fertilized chicken eggs, and to our surprise, viruses with secondary NA mutations did not emerge. Instead, viruses with secondary HA mutations emerged in 3 independent passaging experiments, and each of these mutations increased HA binding to sialic acid receptors. Importantly, these compensatory HA mutations were located in the Ca antigenic site and prevented binding of Ca-specific monoclonal antibodies. Taken together, these data indicate that HA antigenic mutations that alter receptor binding avidity can be compensated for by secondary HA or NA mutations. Antigenic diversification of influenza viruses can therefore occur irrespective of direct antibody pressure, since compensatory HA mutations can be located in distinct antibody binding sites.  相似文献   

20.
《Current biology : CB》2020,30(10):R527-R534
Beneficial mutations are rare and deleterious mutations are purged by natural selection. As a result, the vast majority of mutations that accumulate in genomes belong to the class of neutral mutations. Over the last two decades, neutral mutations, despite their null effect on fitness, have been shown to affect evolvability by providing access to new phenotypes through subsequent mutations that would not have been available otherwise. Here we propose that in addition, many mutations — independent of their selective effects — can affect the mutability of neighboring DNA sequences and modulate the efficacy of homologous recombination. Such mutations do not change the spectrum of accessible phenotypes, but rather the rate at which new phenotypes will be produced. Therefore, neutral mutations that accumulate in genomes have an important long-term impact on the evolutionary fate of genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号