首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling.  相似文献   

2.
Leucine-rich repeat-containing, G protein-coupled receptors (LGRs) represent a unique subgroup of G protein-coupled receptors with a large ectodomain. Recent studies demonstrated that relaxin activates two orphan LGRs, LGR7 and LGR8, whereas INSL3/Leydig insulin-like peptide specifically activates LGR8. Human relaxin 3 (H3 relaxin) was recently discovered as a novel ligand for relaxin receptors. Here, we demonstrate that H3 relaxin activates LGR7 but not LGR8. Taking advantage of the overlapping specificity of these three ligands for the two related LGRs, chimeric receptors were generated to elucidate the mechanism of ligand activation of LGR7. Chimeric receptor LGR7/8 with the ectodomain from LGR7 but the transmembrane region from LGR8 maintains responsiveness to relaxin but was less responsive to H3 relaxin based on ligand stimulation of cAMP production. The decreased ligand signaling was accompanied by decreases in the ability of H3 relaxin to compete for (33)P-relaxin binding to the chimeric receptor. However, replacement of the exoloop 2, but not exoloop 1 or 3, of LGR7 to the chimeric LGR7/8 restored ligand binding and receptor-mediated cAMP production. These results suggested that activation of LGR7 by H3 relaxin involves specific binding of the ligand to both the ectodomain and the exoloop 2, thus providing a model with which to understand the molecular basis of ligand signaling for this unique subgroup of G protein-coupled receptors.  相似文献   

3.
4.
The receptors for the peptide hormones relaxin and insulin-like peptide 3 (INSL3) are the leucine-rich repeat-containing G-protein-coupled receptors LGR7 and LGR8 recently renamed as the relaxin family peptide (RXFP) receptors, RXFP1 and RXFP2, respectively. These receptors differ from other LGRs by the addition of an N-terminal low density lipoprotein receptor class A (LDLa) module and are the only human G-protein-coupled receptors to contain such a domain. Recently it was shown that the LDLa module of the RXFP1 and RXFP2 receptors is essential for ligand-stimulated cAMP signaling. The mechanism by which the LDLa module modulates receptor signaling is unknown; however, it represents a unique paradigm in understanding G-protein-coupled receptor signaling. Here we present the structure of the RXFP1 receptor LDLa module determined by solution NMR spectroscopy. The structure is similar to other LDLa modules but shows small differences in side chain orientations and inter-residue packing. Interchange of the module with the second ligand binding domain of the LDL receptor, LB2, results in a receptor that binds relaxin with full affinity but is unable to signal. Furthermore, we demonstrate via structural studies on mutated LDLa modules and functional studies on mutated full-length receptors that a hydrophobic surface within the N-terminal region of the module is essential for activation of RXFP1 receptor signal in response to relaxin stimulation. This study has highlighted the necessity to understand the structural effects of single amino acid mutations on the LDLa module to fully interpret the effects of these mutations on receptor activity.  相似文献   

5.
Glycoprotein hormone receptors, including LH receptor, FSH receptor, and TSH receptor, belong to the large G protein-coupled receptor (GPCR) superfamily but are unique in having a large ectodomain important for ligand binding. In addition to two recently isolated mammalian LGRs (leucine-rich repeat-containing, G protein-coupled receptors), LGR4 and LGR5, we further identified two new paralogs, LGR6 and LGR7, for glycoprotein hormone receptors. Phylogenetic analysis showed that there are three LGR subgroups: the known glycoprotein hormone receptors; LGR4 to 6; and a third subgroup represented by LGR7. LGR6 has a subgroup-specific hinge region after leucine-rich repeats whereas LGR7, like snail LGR, contains a low density lipoprotein (LDL) receptor cysteine-rich motif at the N terminus. Similar to LGR4 and LGR5, LGR6 and LGR7 mRNAs are expressed in multiple tissues. Although the putative ligands for LGR6 and LGR7 are unknown, studies on single amino acid mutants of LGR7, with a design based on known LH and TSH receptor gain-of-function mutations, indicated that the action of LGR7 is likely mediated by the protein kinase A but not the phospholipase C pathway. Thus, mutagenesis of conserved residues to allow constitutive receptor activation is a novel approach for the characterization of signaling pathways of selective orphan GPCRs. The present study also defines the existence of three subclasses of leucine-rich repeat-containing, G protein-coupled receptors in the human genome and allows future studies on the physiological importance of this expanding subgroup of GPCR.  相似文献   

6.
Leucine-rich repeat-containing, G protein-coupled receptors (LGRs) belong to the largest mammalian superfamily of proteins with seven-transmembrane domains. LGRs can be divided into three subgroups based on their unique domain arrangement. Although two subgroups have been found to be receptors for glycoprotein hormones and relaxin-related ligands, respectively, the third LGR subgroup, consisting of LGR4-6, are orphan receptors with unknown physiological roles. To elucidate the functions of this subgroup of LGRs, LGR4 null mice were generated using a secretory trap approach to delete the majority of the LGR4 gene after the insertion of a beta-galactosidase reporter gene immediately after exon 1. Tissues expressing LGR4 were analyzed based on histochemical staining of the transgene driven by the endogenous LGR4 promoter. LGR4 was widely expressed in kidney, adrenal gland, stomach, intestine, heart, bone/cartilage, and other tissues. The expression of LGR4 in these tissues was further confirmed by immunohistochemical studies in wild-type animals. Analysis of the viability of 250 newborn animals suggested a skewed inheritance pattern, indicating that only 40% of the expected LGR4 null mice were born. For the LGR4 null mice viable at birth, most of them died within 2 d. Furthermore, the LGR4 null mice showed intrauterine growth retardation as reflected by a 14% decrease in body weight at birth, together with 30% and 40% decreases in kidney and liver weights, respectively. The present findings demonstrate the widespread expression of LGR4, and an essential role of LGR4 for embryonic growth, as well as kidney and liver development. The observed pre- and postnatal lethality of LGR4 null mice illustrates the importance of the LGR4 signaling system for the survival and growth of animals during the perinatal stage.  相似文献   

7.
The receptors for LH, FSH, and TSH belong to the large G protein-coupled, seven-transmembrane protein family and are unique in having a large N-terminal extracellular (ecto-) domain containing leucine-rich repeats important for interactions with the large glycoprotein hormone ligands. Recent studies indicated the evolution of an expanding family of homologous leucine-rich repeat-containing, G protein-coupled receptors (LGRs), including the three known glycoprotein hormone receptors; mammalian LGR4 and LGR5; and LGRs in sea anemone, fly, and snail. We isolated nematode LGR cDNA and characterized its gene from the Caenorhabditis elegans genome. This receptor cDNA encodes 929 amino acids consisting of a signal peptide for membrane insertion, an ectodomain with nine leucine-rich repeats, a seven-TM region, and a long C-terminal tail. The nematode LGR has five potential N-linked glycosylation sites in its ectodomain and multiple consensus phosphorylation sites for protein kinase A and C in the cytoplasmic loop and C tail. The nematode receptor gene has 13 exons; its TM region and C tail, unlike mammalian glycoprotein hormone receptors, are encoded by multiple exons. Sequence alignments showed that the TM region of the nematode receptor has 30% identity and 50% similarity to the same region in mammalian glycoprotein hormone receptors. Although human 293T cells expressing the nematode LGR protein do not respond to human glycoprotein hormones, these cells exhibited major increases in basal cAMP production in the absence of ligand stimulation, reaching levels comparable to those in cells expressing a constitutively activated mutant human LH receptor found in patients with familial male-limited precocious puberty. Analysis of cAMP production mediated by chimeric receptors further indicated that the ectodomain and TM region of the nematode LGR and human LH receptor are interchangeable and the TM region of the nematode LGR is responsible for constitutive receptor activation. Thus, the identification and characterization of the nematode receptor provides the basis for understanding the evolutionary relationship of diverse LGRs and for future analysis of mechanisms underlying the activation of glycoprotein hormone receptors and related LGRs.  相似文献   

8.
Zinc RING finger 3 (ZNRF3) and its homolog RING finger 43 (RNF43) antagonize Wnt signaling in adult stem cells by ubiquitinating Frizzled receptors (FZD), which leads to endocytosis of the Wnt receptor. Conversely, binding of ZNRF3/RNF43 to LGR4-6 – R-spondin blocks Frizzled ubiquitination and enhances Wnt signaling. Here, we present crystal structures of the ZNRF3 ectodomain and its complex with R-spondin 1 (RSPO1). ZNRF3 binds RSPO1 and LGR5-RSPO1 with micromolar affinity via RSPO1 furin-like 1 (Fu1) domain. Anonychia-related mutations in RSPO4 support the importance of the observed interface. The ZNRF3-RSPO1 structure resembles that of LGR5-RSPO1-RNF43, though Fu2 of RSPO1 is variably oriented. The ZNRF3-binding site overlaps with trans-interactions observed in 2:2 LGR5-RSPO1 complexes, thus binding of ZNRF3/RNF43 would disrupt such an arrangement. Sequence conservation suggests a single ligand-binding site on ZNRF3, consistent with the proposed competing binding role of ZNRF3/RNF43 in Wnt signaling.  相似文献   

9.
The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn’s disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis.  相似文献   

10.
Lutropin (LH) and follitropin (FSH) receptors belong to a group of leucine-rich repeat-containing, G protein-coupled receptors (LGRs) found in vertebrates and flies. We fused the ectodomain of human LH or FSH receptors to the transmembrane region of fly LGR2. The chimeric human/fly receptors, unlike their wild type counterparts, exhibited ligand-independent constitutive activity. Because ectodomains likely interact with exoloops to constrain the receptors, individual exoloops of the chimeric receptor containing the ectodomain of the LH receptor and transmembrane region of fly LGR2 was replaced with LH receptor sequences. Chimeric receptors with the ectodomain and exoloop 2, but not exoloop 1 or 3, from LH receptors showed decreases in constitutive activity, but ligand treatment stimulated cAMP production. Furthermore, substitution of key resides in the hinge region of fly LGR2 with LH receptor sequences led to constitutive receptor activation; however, concomitant substitution of the homologous exoloop 2 of the LH receptor decreased G(s) coupling. These results suggest that the hinge region of the LH receptor interacts with exoloop 2 to constrain the receptor in an inactive conformation whereas ligand binding relieves this constraint, leading to G(s) activation.  相似文献   

11.
gp130 is the shared signal-transducing receptor subunit for the large and important family of interleukin 6-like cytokines. Previous x-ray structures of ligand-receptor complexes of this family lack the three membrane-proximal domains that are essential for signal transduction. Here we report the crystal structure of the entire extracellular portion of human gp130 (domains 1–6, D1–D6) at 3.6 Å resolution, in an unliganded form, as well as a higher resolution structure of the membrane-proximal fibronectin type III domains (D4–D6) at 1.9 Å. This represents the first atomic resolution structure of the complete ectodomain of any “tall” cytokine receptor. These structures show that other than a reorientation of the D1 domain, there is little structural change in gp130 upon ligand binding. They also reveal that the interface between the D4 and D5 domains forms an acute bend in the gp130 structure. Key residues at this interface are highly conserved across the entire tall receptor family, suggesting that this acute bend may be a common feature of these receptors. Importantly, this geometry positions the C termini of the membrane-proximal fibronectin type III domains of the tall cytokine receptors in close proximity within the transmembrane complex, favorable for receptor-associated Janus kinases to trans-phosphorylate and activate each other.  相似文献   

12.
Notch signaling makes critical contributions to cell fate determination in all metazoan organisms, yet remarkably little is known about the binding affinity of the four mammalian Notch receptors for their three Delta-like and two Jagged family ligands. Here, we utilized signaling assays and biochemical studies of purified recombinant ligand and receptor molecules to investigate the differences in signaling behavior and intrinsic affinity between Notch1-Dll1 and Notch1-Dll4 complexes. Systematic deletion mutagenesis of the human Notch1 ectodomain revealed that epidermal growth factor (EGF) repeats 6–15 are sufficient to maintain signaling in a reporter assay at levels comparable with the full-length receptor, and identified important contributions from EGF repeats 8–10 in conveying an activating signal in response to either Dll1 or Dll4. Truncation studies of the Dll1 and Dll4 ectodomains showed that the MNNL-EGF3 region was both necessary and sufficient for full activation. Plate-based and cell binding assays revealed a specific, calcium-dependent interaction between cell-surface and recombinant Notch receptors and ligand molecules. Finally, direct measurement of the binding affinity of Notch1 EGF repeats 6–15 for Dll1 and Dll4 revealed that Dll4 binds with at least an order of magnitude higher affinity than Dll1. Together, these studies give new insights into the features of ligand recognition by Notch1, and highlight how intrinsic differences in the biochemical behavior of receptor-ligand complexes can influence receptor-mediated responses of developmental signaling pathways.  相似文献   

13.
14.
Histone recognition constitutes a key epigenetic mechanism in gene regulation and cell fate decision. PHF14 is a conserved multi-PHD finger protein that has been implicated in organ development, tissue homeostasis, and tumorigenesis. Here we show that PHF14 reads unmodified histone H3(1–34) through an integrated PHD1-ZnK-PHD2 cassette (PHF14PZP). Our binding, structural and HDX-MS analyses revealed a feature of bipartite recognition, in which PHF14PZP utilizes two distinct surfaces for concurrent yet separable engagement of segments H3-Nter (e.g. 1–15) and H3-middle (e.g. 14–34) of H3(1–34). Structural studies revealed a novel histone H3 binding mode by PHD1 of PHF14PZP, in which a PHF14-unique insertion loop but not the core β-strands of a PHD finger dominates H3K4 readout. Binding studies showed that H3-PHF14PZP engagement is sensitive to modifications occurring to H3 R2, T3, K4, R8 and K23 but not K9 and K27, suggesting multiple layers of modification switch. Collectively, our work calls attention to PHF14 as a ‘ground’ state (unmodified) H3(1–34) reader that can be negatively regulated by active marks, thus providing molecular insights into a repressive function of PHF14 and its derepression.  相似文献   

15.
The R-spondin protein family   总被引:1,自引:0,他引:1  
The four vertebrate R-spondin proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway. These proteins are approximately 35 kDa, and are characterized by two amino-terminal furin-like repeats, which are necessary and sufficient for Wnt signal potentiation, and a thrombospondin domain situated more towards the carboxyl terminus that can bind matrix glycosaminoglycans and/or proteoglycans. Although R-spondins are unable to initiate Wnt signaling, they can potently enhance responses to low-dose Wnt proteins. In humans, rare disruptions of the gene encoding R-spondin1 cause a syndrome of XX sex reversal (phenotypic male), palmoplantar keratosis (a thickening of the palms and soles caused by excess keratin formation) and predisposition to squamous cell carcinoma of the skin. Mutations in the gene encoding R-spondin4 cause anonychia (absence or hypoplasia of nails on fingers and toes). Recently, leucine-rich repeat-containing G-protein-coupled receptor (Lgr)4, Lgr5 and Lgr6, three closely related orphans of the leucine-rich repeat family of G-protein-coupled receptors, have been identified as receptors for R-spondins. Lgr5 and Lgr6 are markers for adult stem cells. Because R-spondins are potent stimulators of adult stem cell proliferation in vivo and in vitro, these findings might guide the therapeutic use of R-spondins in regenerative medicine.  相似文献   

16.
The R-spondin (Rspo) family of proteins consists of secreted cysteine-rich proteins that can activate β-catenin signaling via the Frizzled/LRP5/6 receptor complex. Here, we report that targeted inactivation of the mouse Rspo2 gene causes developmental limb defects, especially in the hindlimb. Although the initiation of the expression of apical ectodermal ridge (AER)-specific genes, including fibroblast growth factor 8 (FGF8) and FGF4 occurred normally, the maintenance of these marker expressions was significantly defective in the hindlimb of Rspo2(/) mice. Consistent with the ligand role of R-spondins in the Wnt/β-catenin signaling pathway, expression of Axin2 and Sp8, targets for β-catenin signaling, within AER was greatly reduced in Rspo2(/) embryos. Furthermore, sonic hedgehog (Shh) signaling within the hindlimbs of Rspo2(/) mice was also significantly decreased. Rspo2 is expressed in the AER of all limb buds, however the stunted phenotype is significantly more severe in the hindlimbs than the forelimbs and strongly biased to the left side. Our findings strongly suggest that Rspo2 expression in the AER is required for AER maintenance likely by regulating Wnt/β-catenin signaling.  相似文献   

17.
Expression pattern of the orphan receptor LGR4/GPR48 gene in the mouse   总被引:1,自引:1,他引:0  
Leucine-rich G-protein-coupled Receptors (LGR) constitute a subfamily of receptors related to glycoprotein hormone receptors. Amongst them, LGR4, LGR5 and LGR6 form a cluster for which natural agonists are still unknown. By an extensive gene trapping approach, Leighton et al. (2001) obtained a mouse line in which the LGR4 gene is disrupted by a trap vector carrying two biological markers, beta-geo (a fusion between bacterial beta-galactosidase and neomycin phosphotransferase) and a placental alkaline phosphatase (PLAP). Due to perinatal lethality, characterization of adult mice homozygous for this insertion has been impaired. In the present study we have investigated LacZ and PLAP activity patterns in heterozygous mice as a marker for LGR4 natural expression at both macroscopic and histological levels. We present a detailed atlas of LGR4 expression, which displays very wide expression with particularly strong activity in cartilages, kidneys, reproductive tracts and nervous system cells.  相似文献   

18.
19.

Background

Invasion of the red blood cells (RBC) by the merozoite of malaria parasites involves a large number of receptor ligand interactions. The reticulocyte binding protein homologue family (RH) plays an important role in erythrocyte recognition as well as virulence. Recently, it has been shown that members of RH in addition to receptor binding may also have a role as ATP/ADP sensor. A 94 kDa region named Nucleotide-Binding Domain 94 (NBD94) of Plasmodium yoelii YM, representative of the putative nucleotide binding region of RH, has been demonstrated to bind ATP and ADP selectively. Binding of ATP or ADP induced nucleotide-dependent structural changes in the C-terminal hinge-region of NBD94, and directly impacted on the RBC binding ability of RH.

Methodology/Principal Findings

In order to find the smallest structural unit, able to bind nucleotides, and its coupling module, the hinge region, three truncated domains of NBD94 have been generated, termed NBD94444–547, NBD94566–663 and NBD94674–793, respectively. Using fluorescence correlation spectroscopy NBD94444–547 has been identified to form the smallest nucleotide binding segment, sensitive for ATP and ADP, which became inhibited by 4-Chloro-7-nitrobenzofurazan. The shape of NBD94444–547 in solution was calculated from small-angle X-ray scattering data, revealing an elongated molecule, comprised of two globular domains, connected by a spiral segment of about 73.1 Å in length. The high quality of the constructs, forming the hinge-region, NBD94566–663 and NBD94674–793 enabled to determine the first crystallographic and solution structure, respectively. The crystal structure of NBD94566–663 consists of two helices with 97.8 Å and 48.6 Å in length, linked by a loop. By comparison, the low resolution structure of NBD94674–793 in solution represents a chair–like shape with three architectural segments.

Conclusions

These structures give the first insight into how nucleotide binding impacts on the overall structure of RH and demonstrates the potential use of this region as a novel drug target.  相似文献   

20.
Intrinsically disordered proteins (IDPs) were found to be widely associated with human diseases and may serve as potential drug design targets. However, drug design targeting IDPs is still in the very early stages. Progress in drug design is usually achieved using experimental screening; however, the structural disorder of IDPs makes it difficult to characterize their interaction with ligands using experiments alone. To better understand the structure of IDPs and their interactions with small molecule ligands, we performed extensive simulations on the c-Myc370–409 peptide and its binding to a reported small molecule inhibitor, ligand 10074-A4. We found that the conformational space of the apo c-Myc370–409 peptide was rather dispersed and that the conformations of the peptide were stabilized mainly by charge interactions and hydrogen bonds. Under the binding of the ligand, c-Myc370–409 remained disordered. The ligand was found to bind to c-Myc370–409 at different sites along the chain and behaved like a ‘ligand cloud’. In contrast to ligand binding to more rigid target proteins that usually results in a dominant bound structure, ligand binding to IDPs may better be described as ligand clouds around protein clouds. Nevertheless, the binding of the ligand and a non-ligand to the c-Myc370–409 target could be clearly distinguished. The present study provides insights that will help improve rational drug design that targets IDPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号