首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P70 ribosomal protein S6 kinase 1 (P70S6K1) is activated by the mammalian target of rapamycin (mTORC1) and regulates proliferation, growth, and metabolism. PF-4708671 is a novel, cell-permeable, has been proposed to be a highly specific inhibitor of p70S6K1. It is used in micromolar concentration range to dissect signaling pathways downstream of mTORC1 and to study the function of p70S6K1. Here we show that PF-4708671 induces AMP-activated protein kinase (AMPK) phosphorylation and activation in immortalized mouse embryonic fibroblasts (MEF) independently of p70S6K1, due to specific inhibition of mitochondrial respiratory chain Complex I.  相似文献   

2.
Caspase-dependent apoptosis is considered one of the most important cell death pathways. When the apoptotic process is blocked, a form of programmed necrosis called necroptosis occurs. Apoptosis and necroptosis may share some regulatory mechanisms. Recent studies indicated that receptor interacting protein 1 (RIP1), an Hsp90-associated kinase, is an important regulatory switch between apoptosis and necroptosis. In this study, we showed that oxygen-glucose deprivation (OGD) combined with a caspase inhibitor zVAD (OGD/zVAD)-induced RIP1 protein expression in a time-dependent manner. We found that geldanamycin (GA), a benzoquinone ansamycin, protected against neuronal injury induced by OGD/zVAD treatment in cultured primary neurons. More importantly, GA decreased RIP1 protein level in a time- and concentration-dependent manner. In this study, we found that GA also decreased the Hsp90 protein level, which caused instability of RIP1 protein, resulting in decreased RIP1 protein level but not RIP1 mRNA level after GA treatment. We concluded that the GA-mediated protection against OGD/zVAD-induced neuronal injury was associated with enhanced RIP1 protein instability by decreasing Hsp90 protein level. GA and its derivatives may be promising for the prevention of neuronal injury during ischemic injury.  相似文献   

3.
《Autophagy》2013,9(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

4.
Wu YT  Tan HL  Huang Q  Kim YS  Pan N  Ong WY  Liu ZG  Ong CN  Shen HM 《Autophagy》2008,4(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

5.
Autophagy has diverse biological functions and is involved in many biological processes. The L929 cell death induced by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethyl ketone (zVAD) was shown to be an autophagy-mediated death for which RIP1 and RIP3 were both required. It was also reported that zVAD can induce a small amount of TNF production, which was shown to be required for zVAD-induced L929 cell death, arguing for the contribution of autophagy in the zVAD-induced L929 cell death. In an effort to study RIP3 mediated cell death, we identified regulator of G-protein signaling 19 (RGS19) as a RIP3 interacting protein. We showed that RGS19 and its partner Gα-inhibiting activity polypeptide 3 (GNAI3) are involved in zVAD-, but not TNF-, induced cell death. The role of RGS19 and GNAI3 in zVAD-induced cell death is that they are involved in zVAD-induced autophagy. By the use of small hairpin RNAs and chemical inhibitors, we further demonstrated that zVAD-induced autophagy requires not only RIP1, RIP3, PI3KC3 and Beclin-1, but also RGS19 and GNAI3, and this autophagy is required for zVAD-induced TNF production. Collectively, our data suggest that zVAD-induced L929 cell death is a synergistic result of autophagy, caspase inhibition and autocrine effect of TNF.  相似文献   

6.
In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.  相似文献   

7.
Upon tumour necrosis factor alpha (TNFα) stimulation, cells respond actively by way of cell survival, apoptosis or programmed necrosis. The receptor‐interacting proteins 1 (RIP1) and 3 (RIP3) are responsible for TNFα‐mediated programmed necrosis. To delineate the differential contributions of RIP3 and RIP1 to programmed necrosis, L929 cells were stimulated with TNFα, carbobenzoxy‐valyl‐alanyl‐aspartyl‐[O‐methyl]‐fluoromethylketone (zVAD) or zVAD along with TNFα following RNA interference against RIP1 and RIP3, respectively. RIP1 silencing did not protect cells from TNFα‐mediated cell death, while RIP3 down‐regulation made them refractory to TNFα. The heat shock protein 90 inhibitor geldanamycin (GA) down‐regulated both RIP1 and RIP3 expression, which rendered cells resistant to zVAD/TNFα‐mediated cell death but not to TNFα‐mediated cell death alone. Therefore, the protective effect of GA on zVAD/TNFα‐stimulated necrosis might be attributed to RIP3, not RIP1, down‐regulation. Pretreatment of L929 cells with rapamycin mitigated zVAD‐mediated cell death, while the autophagy inhibitor chloroquine did not affect necrotic cell death. Meanwhile, necrotic cell death by zVAD and TNFα was caused by reactive oxygen species generation and effectively diminished by lipid‐soluble butylated hydroxyanisole. Taken together, the results indicate that RIP1 and RIP3 can independently mediate death signals being transduced by two different death stimuli, zVAD and TNFα. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Chen SY  Chiu LY  Maa MC  Wang JS  Chien CL  Lin WW 《Autophagy》2011,7(2):217-228
The treatment of L929 fibrosarcoma cells with zVAD has been shown to induce necroptosis. However, whether autophagy is involved or not in this event remains controversial. In this study, we re-examined the role of autophagy in zVAD-induced cell death in L929 cells and further elucidated the signaling pathways triggered by caspase inhibition and contributing to autophagic death. First, we found that zVAD can stimulate LC3-II formation, autophagosome and autolysosome formation, and ROS accumulation. Antioxidants, beclin 1 or Atg5 silencing, and class III PtdIns3K inhibitors all effectively blocked ROS production and cell death, suggesting ROS accumulation downstream of autophagy contributes to cell necrosis. zVAD also stimulated PARP activation, and the PARP inhibitor DPQ can reduce zVAD-induced cell death, but did not affect ROS production, suggesting the increased ROS leads to PARP activation and cell death. Notably, our data also indicated the involvement of Src-dependent JNK and ERK in zVAD-induced ROS production and autophagic death. We found caspase 8 is associated with c-Src at the resting state, and upon zVAD treatment this association was decreased and accompanied by c-Src activation. In conclusion, we confirm the autophagic death in zVAD-treated L929 cells, and define a new molecular pathway in which Src-dependent ERK and JNK activation can link a signal from caspase inhibition to autophagy, which in turn induce ROS production and PARP activation, eventually leading to necroptosis. Thus, in addition to initiating proteolytic activity for cell apoptosis, inactivated caspase 8 also functions as a signaling molecule for autophagic death.  相似文献   

9.
10.
11.
Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis.  相似文献   

12.
Type 2 diabetes is associated with alterations in protein kinase B (PKB/Akt) and mammalian target of rapamycin complex 1 (mTORC1) signalling. The proline-rich Akt substrate of 40-kDa (PRAS40) is a component of mTORC1, which has a regulatory function at the intersection of the PKB/Akt and mTORC1 signalling pathway. Phosphorylation of PRAS40-Thr246 by PKB/Akt, and PRAS40-Ser183 and PRAS40-Ser221 by mTORC1 results in dissociation from mTORC1, and its binding to 14-3-3 proteins. Although all phosphorylation sites within PRAS40 have been implicated in 14-3-3 binding, substitution of Thr246 by Ala alone is sufficient to abolish 14-3-3 binding under conditions of intact mTORC1 signalling. This suggests that phosphorylation of PRAS40-Thr246 may facilitate efficient phosphorylation of PRAS40 on its mTORC1-dependent sites. In the present study, we investigated the mechanism of PRAS40-Ser183 phosphorylation in response to insulin. Insulin promoted PRAS40-Ser183 phosphorylation after a euglycaemic–hyperinsulinaemic clamp in human skeletal muscle. The insulin-induced PRAS40-Ser183 phosphorylation was further evidenced in vivo in rat skeletal and cardiac muscle, and in vitro in A14 fibroblasts, 3T3L1 adipocytes and L6 myotubes. Inhibition of mTORC1 by rapamycin or amino acid deprivation partially abrogated insulin-mediated PRAS40-Ser183 phosphorylation in cultured cell lines. However, lowering insulin-induced PRAS40-Thr246 phosphorylation using wortmannin or palmitate in cell lines, or by feeding rats a high-fat diet, completely abolished insulin-mediated PRAS40-Ser183 phosphorylation. In addition, replacement of Thr246 by Ala reduced insulin-mediated PRAS40-Ser183 phosphorylation. We conclude that PRAS40-Ser183 is a component of insulin action, and that efficient phosphorylation of PRAS40-Ser183 by mTORC1 requires the phosphorylation of PRAS40-Thr246 by PKB/Akt.  相似文献   

13.

Aims

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic clinical benefits in advanced non-small cell lung cancer (NSCLC); however, resistance remains a serious problem in clinical practice. The present study analyzed mTOR-associated signaling-pathway differences between the EGFR TKI-sensitive and -resistant NSCLC cell lines and investigated the feasibility of targeting mTOR with specific mTOR inhibitor in EGFR TKI resistant NSCLC cells.

Methods

We selected four different types of EGFR TKI-sensitive and -resistant NSCLC cells: PC9, PC9GR, H1650 and H1975 cells as models to detect mTOR-associated signaling-pathway differences by western blot and Immunoprecipitation and evaluated the antiproliferative effect and cell cycle arrest of ku-0063794 by MTT method and flow cytometry.

Results

In the present study, we observed that mTORC2-associated Akt ser473-FOXO1 signaling pathway in a basal state was highly activated in resistant cells. In vitro mTORC1 and mTORC2 kinase activities assays showed that EGFR TKI-resistant NSCLC cell lines had higher mTORC2 kinase activity, whereas sensitive cells had higher mTORC1 kinase activity in the basal state. The ATP-competitive mTOR inhibitor ku-0063794 showed dramatic antiproliferative effects and G1-cell cycle arrest in both sensitive and resistant cells. Ku-0063794 at the IC50 concentration effectively inhibited both mTOR and p70S6K phosphorylation levels; the latter is an mTORC1 substrate and did not upregulate Akt ser473 phosphorylation which would be induced by rapamycin and resulted in partial inhibition of FOXO1 phosphorylation. We also observed that EGFR TKI-sensitive and -resistant clinical NSCLC tumor specimens had higher total and phosphorylated p70S6K expression levels.

Conclusion

Our results indicate mTORC2-associated signaling-pathway was hyperactivated in EGFR TKI-resistant cells and targeting mTOR with specific mTOR inhibitors is likely a good strategy for patients with EGFR mutant NSCLC who develop EGFR TKI resistance; the potential specific roles of mTORC2 in EGFR TKI-resistant NSCLC cells were still unknown and should be further investigated.  相似文献   

14.
The insulin receptor substrate-1 (IRS1) is phosphorylated on serine 307 (human sequence, corresponding to murine serine 302) in response to insulin as part of a feedback loop that controls IRS1 phosphorylation on tyrosine residues by the insulin receptor. This in turn directly affects downstream signaling and is in human adipocytes implicated in the pathogenesis of insulin resistance and type 2 diabetes. The phosphorylation is inhibited by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). The mTORC1-downstream p70 ribosomal protein S6 kinase (S6K1), which is activated by insulin, can phosphorylate IRS1 at serine 307 in vitro and is considered the physiological protein kinase. Because the IRS1 serine 307-kinase catalyzes a critical step in the control of insulin signaling and constitutes a potential target for treatment of insulin resistance, it is important to know whether S6K1 is the physiological serine 307-kinase or not. We report that, by several criteria, S6K1 does not phosphorylate IRS1 at serine 307 in response to insulin in intact human primary adipocytes: (i) The time-courses for phosphorylation of S6K1 and its phosphorylation of S6 are not compatible with the phosphorylation of IRS1 at serine 307; (ii) A dominant-negative construct of S6K1 inhibits the phosphorylation of S6, without effect on the phosphorylation of IRS1 at serine 307; (iii) The specific inhibitor of S6K1 PF-4708671 inhibits the phosphorylation of S6, without effect on phosphorylation of IRS1 at serine 307. mTOR-immunoprecipitates from insulin-stimulated adipocytes contains an unidentified protein kinase specific for phosphorylation of IRS1 at serine 307, but it is not mTOR or S6K1.  相似文献   

15.
Regulation of TFEB and V-ATPases by mTORC1   总被引:2,自引:0,他引:2  
  相似文献   

16.
Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO. FADD was found to mediate formation of the TNF-α-induced pronecrotic RIP1-RIP3 kinase complex, whereas the IκB Kinase (IKK) subunit NEMO appears to function downstream of RIP1-RIP3. Interestingly, loss of RelA potentiated TNF-α-dependent necroptosis, indicating that NEMO regulates necroptosis independently of NF-κB. Using both pharmacologic and genetic approaches, we demonstrate that the overexpression of antioxidants alleviates ROS elevation and necroptosis. Finally, elimination of BAX and BAK or overexpression of Bcl-x(L) protects cells from necroptosis at a later step. These findings provide evidence that mitochondria play an amplifying role in inflammation-induced necroptosis.  相似文献   

17.
Microglia are the resident immune cells in the central nervous system and key players against pathogens and injury. However, persistent microglial activation often exacerbates pathological damage and has been implicated in many neurological diseases. Despite their pivotal physiological and pathophysiological roles, how the survival and death of activated microglia is regulated remains poorly understood. We report here that microglia activated through Toll-like receptors (TLRs) undergo RIP1/RIP3-dependent programmed necrosis (necroptosis) when exposed to the pan caspase inhibitor zVAD-fmk. Although zVAD-fmk and the caspase-8 inhibitor IETD-fmk had no effect on unstimulated primary microglia, they markedly sensitized microglia to TLR1/2,3,4,7/8 ligands or TNF treatment, triggering programmed necrosis that was completely blocked by R1P1 kinase inhibitor necrostatin-1. Interestingly, necroptosis induced by TLR ligands and zVAD was restricted to microglial cells and was not observed in astrocytes, neurons or oligodendrocytes even though they are known to express certain TLRs. Deletion of genes encoding TNF or TNFR1 failed to prevent lipopolysaccharide- and poly(I:C)-induced microglial necroptosis, unveiling a TNF-independent programmed necrosis pathway in TLR3- and TLR4-activated microglia. Microglia from mice lacking functional TRIF were fully protected against TLR3/4 activation and zVAD-fmk-induced necrosis, and genetic deletion of rip3 also prevented microglia necroptosis. Activation of c-jun N-terminal kinase and generation of specific reactive oxygen species were downstream signaling events required for microglial cell death execution. Taken together, this study reveals a robust RIP3-dependent necroptosis signaling pathway in TLR-activated microglia upon caspase blockade and suggests that TLR signaling and programmed cell death pathways are closely linked in microglia, which could contribute to neuropathology and neuroinflammation when dysregulated.  相似文献   

18.

Background

Necroptosis/programmed necrosis is initiated by a macro-molecular protein complex termed the necrosome. Receptor interacting protein kinase 1 (RIPK1/RIP1) and RIP3 are key components of the necrosome. TNFα is a prototypic inducer of necrosome activation, and it is widely believed that deubiquitination of RIP1 at the TNFR-1 signaling complex precedes transition of RIP1 into the cytosol where it forms the RIP1-RIP3 necrosome. Cylindromatosis (CYLD) is believed to promote programmed necrosis by facilitating RIP1 deubiquitination at this membrane receptor complex.

Methodology/Principal Findings

We demonstrate that RIP1 is indeed the primary target of CYLD in TNFα-induced programmed necrosis. We observed that CYLD does not regulate RIP1 ubiquitination at the TNF receptor. TNF and zVAD-induced programmed necrosis was highly attenuated in CYLD-/- cells. However, in the presence of cycloheximide or SMAC mimetics, programmed necrosis was only moderately reduced in CYLD-/- cells. Under the latter conditions, RIP1-RIP3 necrosome formation is only delayed, but not abolished in CYLD-/- cells. We further demonstrate that RIP1 within the NP-40 insoluble necrosome is ubiquitinated and that CYLD regulates RIP1 ubiquitination in this compartment. Hence, RIP1 ubiquitination in this late-forming complex is greatly increased in CYLD-/- cells. Increased RIP1 ubiquitination impairs RIP1 and RIP3 phosphorylation, a signature of kinase activation.

Conclusions/Significance

Our results show that CYLD regulates RIP1 ubiquitination in the TNFα-induced necrosome, but not in the TNFR-1 signaling complex. In cells sensitized to programmed necrosis with SMAC mimetics, CYLD is not essential for necrosome assembly. Since SMAC mimetics induces the loss of the E3 ligases cIAP1 and cIAP2, reduced RIP1 ubiquitination could lead to reduced requirement for CYLD to remove ubiquitin chains from RIP1 in the TNFR-1 complex. As increased RIP1 ubiquitination in the necrosome correlates with impaired RIP1 and RIP3 phosphorylation and function, these results suggest that CYLD controls RIP1 kinase activity during necrosome assembly.  相似文献   

19.
Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKCε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKCε phosphorylation. Furthermore, phosphorylation of PKCε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKCε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKCε in the Akt activation. Biochemical analyses also revealed that PKCε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKCε functions downstream of mTORC2 leading to Akt activation.  相似文献   

20.
Autophagy is an intracellular catabolic mechanism for the degradation of cytoplasmic constituents in the autophagosomal–lysosomal pathway. This mechanism plays an important role in homeostasis and it is defective in certain diseases. Preceding studies have revealed that autophagy is developing as an important moderator of pathological responses associated to spinal cord injury (SCI) and plays a crucial role in secondary injury initiating a progressive degeneration of the spinal cord. Thus, based on this evidence in this study, we used two different selective inhibitors of mTOR activity to explore the functional role of autophagy in an in vivo model of SCI as well as to determine whether the autophagic process is involved in spinal cord tissue damage. We treated animals with a novel synthetic inhibitor temsirolimus and with a dual mTORC1 and mTORC2 inhibitor KU0063794 matched all with the well-known inhibitor of mTOR the rapamycin. Our results demonstrated that mTOR inhibitors could regulate the neuroinflammation associated to SCI and the results that we obtained evidently demonstrated that rapamycin and temsirolimus significantly diminished the expression of iNOS, COX2, GFAP, and re-established nNOS levels, but the administration of KU0063794 is able to blunt the neuroinflammation better than rapamycin and temsirolimus. In addition, neuronal loss and cell mortality in the spinal cord after injury were considerably reduced in the KU0063794-treated mice. Accordingly, taken together our results denote that the administration of KU0063794 produced a neuroprotective function at the lesion site following SCI, representing a novel therapeutic approach after SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号