首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epidemiological and evolutionary dynamics of the two cocirculating lineages of influenza B virus, Victoria and Yamagata, are poorly understood, especially in tropical or subtropical areas of Southeast Asia. We performed a phylogenetic analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences of influenza B viruses isolated in Guangzhou, a southern Chinese city, during 2009 to 2010 and compared the demographic and clinical features of infected patients. We identified multiple viral introductions of Victoria strains from both Chinese and international sources, which formed two phylogenetically and antigenically distinct clades (Victoria 1 and 2), some of which persisted between seasons. We identified one dominant Yamagata introduction from outside China during 2009. Our phylogenetic analysis reveals the occurrence of reassortment events among the Victoria and Yamagata lineages and also within the Victoria lineage. We found no significant difference in clinical severity by influenza B lineage, with the exceptions that (i) the Yamagata lineage infected older people than either Victoria lineage and (ii) fewer upper respiratory tract infections were caused by the Victoria 2 than the Victoria 1 clade. Overall, our study reveals the complex epidemiological dynamics of different influenza B lineages within a single geographic locality and has implications for vaccination policy in southern China.  相似文献   

2.
The evolution and population dynamics of human influenza in Taiwan is a microcosm of the viruses circulating worldwide, which has not yet been studied in detail. We collected 343 representative full genome sequences of human influenza A viruses isolated in Taiwan between 1979 and 2009. Phylogenetic and antigenic data analysis revealed that H1N1 and H3N2 viruses consistently co-circulated in Taiwan, although they were characterized by different temporal dynamics and degrees of genetic diversity. Moreover, influenza A viruses of both subtypes underwent internal gene reassortment involving all eight segments of the viral genome, some of which also occurred during non-epidemic periods. The patterns of gene reassortment were different in the two subtypes. The internal genes of H1N1 viruses moved as a unit, separately from the co-evolving HA and NA genes. On the other hand, the HA and NA genes of H3N2 viruses tended to segregate consistently with different sets of internal gene segments. In particular, as reassortment occurred, H3HA always segregated as a group with the PB1, PA and M genes, while N2NA consistently segregated with PB2 and NP. Finally, the analysis showed that new phylogenetic lineages and antigenic variants emerging in summer were likely to be the progenitors of the epidemic strains in the following season. The synchronized seasonal patterns and high genetic diversity of influenza A viruses observed in Taiwan make possible to capture the evolutionary dynamic and epidemiological rules governing antigenic drift and reassortment and may serve as a “warning” system that recapitulates the global epidemic.  相似文献   

3.
Phylogenetic profiles of the genes coding for the hemagglutinin (HA) protein, nucleoprotein (NP), matrix (M) protein, and nonstructural (NS) proteins of influenza B viruses isolated from 1940 to 1998 were analyzed in a parallel manner in order to understand the evolutionary mechanisms of these viruses. Unlike human influenza A (H3N2) viruses, the evolutionary pathways of all four genes of recent influenza B viruses revealed similar patterns of genetic divergence into two major lineages. Although evolutionary rates of the HA, NP, M, and NS genes of influenza B viruses were estimated to be generally lower than those of human influenza A viruses, genes of influenza B viruses demonstrated complex phylogenetic patterns, indicating alternative mechanisms for generation of virus variability. Topologies of the evolutionary trees of each gene were determined to be quite distinct from one another, showing that these genes were evolving in an independent manner. Furthermore, variable topologies were apparently the result of frequent genetic exchange among cocirculating epidemic viruses. Evolutionary analysis done in the present study provided further evidence for cocirculation of multiple lineages as well as sequestering and reemergence of phylogenetic lineages of the internal genes. In addition, comparison of deduced amino acid sequences revealed a novel amino acid deletion in the HA1 domain of the HA protein of recent isolates from 1998 belonging to the B/Yamagata/16/88-like lineage. It thus became apparent that, despite lower evolutionary rates, influenza B viruses were able to generate genetic diversity among circulating viruses through a combination of evolutionary mechanisms involving cocirculating lineages and genetic reassortment by which new variants with distinct gene constellations emerged.  相似文献   

4.
Evolution and ecology of influenza A viruses.   总被引:148,自引:0,他引:148       下载免费PDF全文
In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii) There is evidence that most new human pandemic strains and variants have originated in southern China. (viii) There is speculation that pigs may serve as the intermediate host in genetic exchange between influenza viruses in avian and humans, but experimental evidence is lacking. (ix) Once the ecological properties of influenza viruses are understood, it may be possible to interdict the introduction of new influenza viruses into humans.  相似文献   

5.
Epidemiological and evolutionary dynamics of influenza B Victoria and Yamagata lineages remained poorly understood in the tropical Southeast Asia region, despite causing seasonal outbreaks worldwide. From 2012–2014, nasopharyngeal swab samples collected from outpatients experiencing acute upper respiratory tract infection symptoms in Kuala Lumpur, Malaysia, were screened for influenza viruses using a multiplex RT-PCR assay. Among 2,010/3,935 (51.1%) patients infected with at least one respiratory virus, 287 (14.3%) and 183 (9.1%) samples were tested positive for influenza A and B viruses, respectively. Influenza-positive cases correlate significantly with meteorological factors—total amount of rainfall, relative humidity, number of rain days, ground temperature and particulate matter (PM10). Phylogenetic reconstruction of haemagglutinin (HA) gene from 168 influenza B viruses grouped them into Yamagata Clade 3 (65, 38.7%), Yamagata Clade 2 (48, 28.6%) and Victoria Clade 1 (55, 32.7%). With neuraminidase (NA) phylogeny, 30 intra-clade (29 within Yamagata Clade 3, 1 within Victoria Clade 1) and 1 inter-clade (Yamagata Clade 2-HA/Yamagata Clade 3-NA) reassortants were identified. Study of virus temporal dynamics revealed a lineage shift from Victoria to Yamagata (2012–2013), and a clade shift from Yamagata Clade 2 to Clade 3 (2013–2014). Yamagata Clade 3 predominating in 2014 consisted of intra-clade reassortants that were closely related to a recent WHO vaccine candidate strain (B/Phuket/3073/2013), with the reassortment event occurred approximately 2 years ago based on Bayesian molecular clock estimation. Malaysian Victoria Clade 1 viruses carried H274Y substitution in the active site of neuraminidase, which confers resistance to oseltamivir. Statistical analyses on clinical and demographic data showed Yamagata-infected patients were older and more likely to experience headache while Victoria-infected patients were more likely to experience nasal congestion and sore throat. This study describes the evolution of influenza B viruses in Malaysia and highlights the importance of continuous surveillance for better vaccination policy in this region.  相似文献   

6.
南京市2011年乙型流感血凝素基因分子特征分析   总被引:1,自引:0,他引:1  
[目的]分析2011年南京市乙型流感病毒的血凝素(HA)分子学特征.[方法]选择7株2011年南京市不同时间段有代表性的乙型流感毒株进行HA基因序列测定,通过生物信息学方法对HA分子学特征进行分析.[结果]7株乙型流感毒株分为两个系,4株为Victoria,3株为Yamagata;与2011年度疫苗株相比,Victoria和Yamagata系毒株分别在抗原位点146、197和116、198发生了氨基酸替换;其中197和198位点分别是Victoria和Yamagata毒株的受体结合位点,由于上述位点的替换使得Victoria系/Yamagata系毒株分别在197/196位增加了一个潜在的糖基化位点.[结论]2011年南京市乙型流感Victoria 系和Yamagata系病毒同时存在,Victoria/Yamagata毒株197/198位点的氨基酸替换,值得做进一步的探讨.  相似文献   

7.
As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or “mixing vessels”, and swine influenza virus surveillance in China should be given a high priority.  相似文献   

8.
Phylogenetic analysis of 20 influenza A virus PB2 genes showed that PB2 genes have evolved into the following four major lineages: (i) equine/Prague/56 (EQPR56); (ii and iii) two distinct avian PB2 lineages, one containing FPV/34 and H13 gull virus strains and the other containing North American avian and recent equine strains; and (iv) human virus strains joined with classic swine virus strains (i.e., H1N1 swine virus strains related to swine/Iowa/15/30). The human virus lineage showed the greatest divergence from its root relative to other lineages. The estimated nucleotide evolutionary rate for the human PB2 lineage was 1.82 x 10(-3) changes per nucleotide per year, which is within the range of published estimates for NP and NS genes of human influenza A viruses. At the amino acid level, PB2s of human viruses have accumulated 34 amino acid changes over the past 55 years. In contrast, the avian PB2 lineages showed much less evolution, e.g., recent avian PB2s showed as few as three amino acid changes relative to the avian root. The completion of evolutionary analyses of the PB1, PB2, PA and NP genes of the ribonucleoprotein (RNP) complex permits comparison of evolutionary pathways. Different patterns of evolution among the RNP genes indicate that the genes of the complex are not coevolving as a unit. Evolution of the PB1 and PB2 genes is less correlated with host-specific factors, and their proteins appear to be evolving more slowly than NP and PA. This suggests that protein functional constraints are limiting the evolutionary divergence of PB1 and PB2 genes. The parallel host-specific evolutionary pathways of the NP and PA genes suggest that these proteins are coevolving in response to host-specific factors. PB2s of human influenza A viruses share a common ancestor with classic swine virus PB2s, and the pattern of evolution suggests that the ancestor was an avian virus PB2. This same pattern of evolution appears in the other genes of the RNP complex. Antigenic studies of HA and NA proteins and sequence comparisons of NS and M genes also suggest a close ancestry for these genes in human and classic swine viruses. From our review of the evolutionary patterns of influenza A virus genes, we propose the following hypothesis: the common ancestor to current strains of human and classic swine influenza viruses predated the 1918 human pandemic virus and was recently derived from the avian host reservoir.  相似文献   

9.
Reassortment of influenza A and B viruses has never been observed in vivo or in vitro. Using reverse genetics techniques, we generated recombinant influenza A/WSN/33 (WSN) viruses carrying the neuraminidase (NA) of influenza B virus. Chimeric viruses expressing the full-length influenza B/Yamagata/16/88 virus NA grew to titers similar to that of wild-type influenza WSN virus. Recombinant viruses in which the cytoplasmic tail or the cytoplasmic tail and the transmembrane domain of the type B NA were replaced with those of the type A NA were impaired in tissue culture. This finding correlates with reduced NA content in virions. We also generated a recombinant influenza A virus expressing a chimeric hemagglutinin (HA) protein in which the ectodomain is derived from type B/Yamagata/16/88 virus HA, whereas both the cytoplasmic and the transmembrane domains are derived from type A/WSN virus HA. This A/B chimeric HA virus did not grow efficiently in MDCK cells. However, after serial passage we obtained a virus population that grew to titers as high as wild-type influenza A virus in MDCK cells. One amino acid change in position 545 (H545Y) was found to be responsible for the enhanced growth characteristics of the passaged virus. Taken together, we show here that the absence of reassortment between influenza viruses belonging to different A and B types is not due to spike glycoprotein incompatibility at the level of the full-length NA or of the HA ectodomain.  相似文献   

10.
The influenza A virus is a negative-stranded RNA virus composed of eight segmented RNA molecules, including polymerases (PB2, PB1, PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix protein (MP), and nonstructure gene (NS). The influenza A viruses are notorious for rapid mutations, frequent reassortments, and possible recombinations. Among these evolutionary events, reassortments refer to exchanges of discrete RNA segments between co-infected influenza viruses, and they have facilitated the generation of pandemic and epidemic strains. Thus, identification of reassortments will be critical for pandemic and epidemic prevention and control. This paper presents a reassortment identification method based on distance measurement using complete composition vector (CCV) and segment clustering using a minimum spanning tree (MST) algorithm. By applying this method, we identified 34 potential reassortment clusters among 2,641 PB2 segments of influenza A viruses. Among the 83 serotypes tested, at least 56 (67.46%) exchanged their fragments with another serotype of influenza A viruses. These identified reassortments involve 1,957 H2N1 and 1,968 H3N2 influenza pandemic strains as well as H5N1 avian influenza virus isolates, which have generated the potential for a future pandemic threat. More frequent reassortments were found to occur in wild birds, especially migratory birds. This MST clustering program is written in Java and will be available upon request.  相似文献   

11.
The genomes of influenza A viruses consist of eight negative-strand RNA segments. Recent studies suggest that influenza viruses are able to specifically package their segmented genomes into the progeny virions. Segment-specific packaging signals of influenza virus RNAs (vRNAs) are located in the 5' and 3' noncoding regions, as well as in the terminal regions, of the open reading frames. How these packaging signals function during genome packaging remains unclear. Previously, we generated a 7-segmented virus in which the hemagglutinin (HA) and neuraminidase (NA) segments of the influenza A/Puerto Rico/8/34 virus were replaced by a chimeric influenza C virus hemagglutinin/esterase/fusion (HEF) segment carrying the HA packaging sequences. The robust growth of the HEF virus suggested that the NA segment is not required for the packaging of other segments. In this study, in order to determine the roles of the other seven segments during influenza A virus genome assembly, we continued to use this HEF virus as a tool and analyzed the effects of replacing the packaging sequences of other segments with those of the NA segment. Our results showed that deleting the packaging signals of the PB1, HA, or NS segment had no effect on the growth of the HEF virus, while growth was greatly impaired when the packaging sequence of the PB2, PA, nucleoprotein (NP), or matrix (M) segment was removed. These results indicate that the PB2, PA, NP, and M segments play a more important role than the remaining four vRNAs during the genome-packaging process.  相似文献   

12.
用RTPCR技术及cDNA末端快速扩增法获得禽流感病毒分离株A/Chicken/Shanghai/F/98(H9N2)代表基因组全长的8个基因片段。基因组序列比较及遗传进化分析结果表明,Chicken/Shanghai/F/98的8个基因均不属于Quail/Hong Kong/G1/97亚系,与香港禽流感事件没有直接关系。它与Chicken/Beijing/1/94的HA、NA、M、NS基因同源率分别为96.7%、96.4%、97.5%和98.0%,这4个基因属于Chicken/Beijing/1/94亚系,其中,NA基因与Duck/Hong Kong/Y280/97的同源率为97.4%,而且它们均在205位后缺失9个核苷酸。而PB2、PB1、PA和NP基因与已知的3个亚系关系较远,分别在相应的进化树上另成分支。因此,Chicken/Shanghai/F/98是两个以上不同基因亚系间发生自然重排的产物。  相似文献   

13.
The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.  相似文献   

14.
本研究采用无特定病原体(specific pathogen free,SPF)鸡胚,从某活禽市场环境中分离出1株H6N6亚型禽流感病毒(A/environment/Zhenjiang/zj18/2013,en/zj18)。通过二代测序技术进行全基因组测序,通过BLASTn 进行同源性检索,并采用MEGA5.0软件构建系统发生树。基因进化树分析表明,分离株en/zj18的所有8个基因节段(PB2、PB1、PA、HA、NP、NA、M和NS)均与近年来中国华东地区流行的H6N6亚型禽流感病毒的相应基因位于同一进化分支,与参考株的核苷酸同源性达96.7%~99.6%。分离株en/zj18的HA蛋白裂解位点为PQIETR↓GL,是低致病性禽流感病毒的分子特征。HA蛋白上关键受体结合位点190和228位(按H3亚型的HA蛋白序列排序)氨基酸分别是E和G,理论上更易与α2,3-半乳糖苷唾液酸受体结合。结果提示,需加强活禽市场禽流感病毒的持续监测,从而为有效应对禽流感病毒对公共卫生的持续威胁提供科学依据。  相似文献   

15.
During the latter half of 2005 a widespread outbreak caused by influenza highly pathogenic H5N1 virus among wild and domestic birds occurred in Russia. As pathogenicity level is a polygenic feature and majority of individual genes of influenza A viruses contribute to pathogenicity of influenza viruses to birds, animals and humans. Nucleotide sequencing of the entire genome of influenza H5N1 virus isolates obtained in Kurgan region (Western Siberia) was performed. Structure of viral proteins was analyzed according to the predicted amino acid sequences. HA receptor-binding site of A/chicken/Kurgan/05/2005 and A/duck/Kurgan/08/2005 strains was typical for avian influenza viruses and contained Glu and Gly at positions 226 and 228, respectively. Structure of the cluster of positively charged amino acid residues at the cleavage site was identical for all isolates: QGERRRKKR. According to the data of neuraminidase structure analysis NA of the H5N1 isolates tested was suggested to belong to Z genotype. Amino acid residues typical for birds were revealed in 30 out of 32 positions of M1, M2, NP, PA and PB2 proteins determining host range specificity. One strain isolated in Kurgan contained lysine in position 627 of PB2 protein. Kurgan isolates was shown to have remantadine-sensitive genotype. Glutamic acid was found at position 92 of NS1 protein in both strains indicating virus resistance to interferon. Phylogenetic analyses allowed relating Kurgan isolates to subclade II of clade II of highly pathogenic H5N1 influenza viruses.  相似文献   

16.
17.
Phylogenetic analysis of 42 membrane protein (M) genes of influenza A viruses from a variety of hosts and geographic locations showed that these genes have evolved into at least four major host-related lineages: (i) A/Equine/prague/56, which has the most divergent M gene; (ii) a lineage containing only H13 gull viruses; (iii) a lineage containing both human and classical swine viruses; and (iv) an avian lineage subdivided into North American avian viruses (including recent equine viruses) and Old World avian viruses (including avianlike swine strains). The M gene evolutionary tree differs from those published for other influenza virus genes (e.g., PB1, PB2, PA, and NP) but shows the most similarity to the NP gene phylogeny. Separate analyses of the M1 and M2 genes and their products revealed very different patterns of evolution. Compared with other influenza virus genes (e.g., PB2 and NP), the M1 and M2 genes are evolving relatively slowly, especially the M1 gene. The M1 and M2 gene products, which are encoded in different but partially overlapping reading frames, revealed that the M1 protein is evolving very slowly in all lineages, whereas the M2 protein shows significant evolution in human and swine lineages but virtually none in avian lineages. The evolutionary rates of the M1 proteins were much lower than those of M2 proteins and other internal proteins of influenza viruses (e.g., PB2 and NP), while M2 proteins showed less rapid evolution compared with other surface proteins (e.g., H3HA). Our results also indicate that for influenza A viruses, the evolution of one protein of a bicistronic gene can affect the evolution of the other protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient "genome constellations," continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.  相似文献   

19.
Influenza is a moving target, which evolves in unexpected directions and is recurrent annually. The 2009 influenza A/H1N1 pandemic virus was unlike the 2009 seasonal virus strains and originated in pigs prior to infecting humans. Three strains of viruses gave rise to the pandemic virus by antigenic shift, reassortment, and recombination, which occurred in pigs as 'mixing vessels'. The three strains of viruses had originally been derived from birds, pigs, and humans. The influenza hemagglutinin (HA) and neuraminidase (NA) external proteins are used to categorize and group influenza viruses. The internal proteins (PB1, PB1-F2, PB2, PA, NP, M, and NS) are involved in the pathogenesis of influenza infection. A major difference between the 1918 and 2009 pandemic viruses is the lack of the pathogenic protein PB1-F2 in the 2009 pandemic strains, which was present in the more virulent 1918 pandemic strains. We provide an overview of influenza infection since 1847 and the advent of influenza vaccination since 1944. Vaccines and chemotherapy help reduce the spread of influenza, reduce morbidity and mortality, and are utilized by the global rapid-response organizations associated with the WHO. Immediate identification of impending epidemic and pandemic strains, as well as sustained vigilance and collaboration, demonstrate continued success in combating influenza.  相似文献   

20.
North American triple reassortant swine (TRS) influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS) closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses'' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2) showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号