首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
从草鱼Ctenopharyngodon idella肝肾cDNA文库中克隆得到胶原凝集素基因。草鱼胶原凝集素全长cDNA为1128bp,其中5′非编码区229bp,3′非翻译区104bp,最大开放阅读框为795bp,编码264个氨基酸。系统进化分析表明草鱼胶原凝集素与斑马鱼的亲缘关系最近。根据草鱼胶原凝集素序列特征,克隆了包含糖基识别域(CRD)的cDNA,并进行原核表达、纯化获得其重组蛋白PCRD。进行PCRD与6种细菌的凝集和糖抑制实验,结果表明半乳糖、葡萄糖、甘露糖和麦芽糖4种糖都会使PCRD与嗜水气单胞菌的凝集明显下降甚至极大地干扰凝集;麦芽糖使金黄色葡萄球菌的凝集明显下降,而肽聚糖和甘露糖会使凝集受到抑制;此外,PCRD的凝集反应不依赖Ca2+。  相似文献   

5.
6.
7.
不同发育阶段草鱼肾脏蛋白质组差异的初步分析   总被引:2,自引:0,他引:2  
为了研究草鱼在不同发育阶段抗病能力差异的发育遗传学原因,以1龄草鱼和3龄草鱼的免疫器官肾脏为材料研究其在蛋白质组水平的差异。提取1龄草鱼和3龄草鱼肾脏的全蛋白,用二维聚丙烯酰胺凝胶电泳进行蛋白质的分离,染色后,扫描成像,经PDQUST软件分析,分别检测到大约900个蛋白质点。这些蛋白质点主要分布在pH4.5-7之间,其分子量大部分在66.2kDa以下。在3龄草鱼中检测到了3个在1龄草鱼中没有的差异蛋白质点,和20个上调、下调的差异点。经MALDI-TOF质谱分析和数据库搜索,证明在3龄草鱼肾脏中上调的差异点中有4个是与免疫或肾脏发育相关的蛋白质。这些初步的研究结果提示草鱼在不同发育阶段抗病能力的差异可能具有其发育遗传学基础。    相似文献   

8.
9.
10.
11.
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}    相似文献   

12.
13.
14.
肖东  林浩然 《动物学报》2003,49(5):600-605
采用静态孵育和放射免疫测定技术,研究了生长抑素抑制剂半胱胺盐酸盐对草鱼脑垂体组织单独孵育或下丘脑脑垂体组织共孵育中生长激素分泌的影响。结果表明:脑垂体组织单独孵育时,半胱胺盐酸盐(0.1、1和10mmol/L)对基础生长激素分泌无影响;而下丘脑脑垂体组织共孵育时,半胱胺盐酸盐(0.1、1和10mmol/L)对基础生长激素分泌有明显影响,且是剂量依存的。神经肽hGHRH、sGnRH—A和LHRH—A对CSH影响的下丘脑脑垂体组织共孵育中生长激素分泌均无协同作用。我们认为,半胱胺盐酸盐可在下丘脑水平调节生长激素释放,半胱胺盐酸盐调节草鱼离体生长激素分泌是由下丘脑途径介导的。  相似文献   

15.
An expressed sequence tag (EST) of B cell translocation gene (BTG) 1 (gcbtg1) was obtained from a grass carp Ctenopharyngodon idellus intestinal complementary (c)DNA library and the full-length cDNA sequence was acquired by rapid amplification of cDNA ends (RACE) technology. The predicted Gcbtg1 protein contains the box A and box B motifs which characterized the BTG and transducer of ERBB2 (TOB) family. Multiple alignment analysis reveals that Gcbtg1 shares an overall identity of 65-94% with Gcbtg1s of other vertebrates. Real-time quantitative PCR analysis reveals that the highest expression level of gcbtg1 was detected in liver and the lowest in muscle. Western blotting analysis indicates that the immunological cross-reactivity occurs between C. idella and human Homo sapiens BTG1 protein. A 1008 bp 5'-flanking region sequence was cloned and analysed.  相似文献   

16.
Two cDNAs, encoding the stress-inducible 70-kDa heat shock protein (Hsp70) and the constitutively expressed 70-kDa heat shock cognate protein (Hsc70), were isolated from grass carp. The Hsp70 and Hsc70 cDNAs were 2250 bp and 2449 bp in length and contained 1932 bp and 1953 bp open reading frames, respectively. Tissue distribution results showed that Hsp70/Hsc70 was highly expressed in gill, kidney, head kidney and peripheral blood lymphocytes (PBLs). Using grass carp PBLs as a cell model, effects of lipopolysaccharide (LPS) on the mRNA and protein levels of Hsp70/Hsc70 were examined. In this case, LPS increased the mRNA expression of Hsp70 in a time- and dose-dependent manner, but had no effect on Hsc70 mRNA expression. In agreement with this, LPS elevated the intracellular Hsp70 markedly, but not the Hsc70 protein levels in parallel experiments. Furthermore, Hsp70 protein was also detected in culture medium. Moreover, inhibition of LPS on Hsp70 release in a time-dependent manner was observed, indicating that there may be a dynamic balance between Hsp70 stores and Hsp70 release in grass carp PBLs following exposure to LPS. Taken together, these results not only shed new insights into the different regulations of LPS on Hsp70/Hsc70 gene expression, protein synthesis and release, but also provide a basis for further study on the functional role of Hsp70 in fish immune response.  相似文献   

17.
18.
In this study, the toll‐like receptor 1 (tlr1) and toll‐like receptor 2 (tlr2) genes of grass carp Ctenopharyngodon idella were cloned and characterized. tlr1 and tlr2 were found to be highly expressed in immune system organs such as spleen, middle kidney and heart kidney. The expression level of tlr1 and tlr2 was found to be up‐regulated at the later stage of viral challenge process. Moreover, subcellular localization indicated that Tlr1 and Tlr2 shared similar localization pattern and both of them may locate in the plasma membrane of transfected cells.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号