首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAPamypgm genes. Expression of the glg operon and glycogen accumulation were carbon source‐ and growth phase‐dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log‐phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose‐grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen‐branching enzyme) mutants are glycogen‐deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus.  相似文献   

3.
The physiological functions of two amylolytic enzymes, a maltogenic amylase (MAase) encoded by yvdF and a debranching enzyme (pullulanase) encoded by amyX, in the carbohydrate metabolism of Bacillus subtilis 168 were investigated using yvdF, amyX, and yvdF amyX mutant strains. An immunolocalization study revealed that YvdF was distributed on both sides of the cytoplasmic membrane and in the periplasm during vegetative growth but in the cytoplasm of prespores. Small carbohydrates such as maltoheptaose and β-cyclodextrin (β-CD) taken up by wild-type B. subtilis cells via two distinct transporters, the Mdx and Cyc ABC transporters, respectively, were hydrolyzed immediately to form smaller or linear maltodextrins. On the other hand, the yvdF mutant exhibited limited degradation of the substrates, indicating that, in the wild type, maltodextrins and β-CD were hydrolyzed by MAase while being taken up by the bacterium. With glycogen and branched β-CDs as substrates, pullulanase showed high-level specificity for the hydrolysis of the outer side chains of glycogen with three to five glucosyl residues. To investigate the roles of MAase and pullulanase in glycogen utilization, the following glycogen-overproducing strains were constructed: a glg mutant with a wild-type background, yvdF glg and amyX glg mutants, and a glg mutant with a double mutant (DM) background. The amyX glg and glg DM strains accumulated significantly larger amounts of glycogen than the glg mutant, while the yvdF glg strain accumulated an intermediate amount. Glycogen samples from the amyX glg and glg DM strains exhibited average molecular masses two and three times larger, respectively, than that of glycogen from the glg mutant. The results suggested that glycogen breakdown may be a sequential process that involves pullulanase and MAase, whereby pullulanase hydrolyzes the α-1,6-glycosidic linkage at the branch point to release a linear maltooligosaccharide that is then hydrolyzed into maltose and maltotriose by MAase.Bacillus subtilis can utilize polysaccharides such as starch, glycogen, and amylose as carbon sources by hydrolyzing them into smaller maltodextrins via the action of extracellular α-amylase (AmyE) (14). In B. subtilis, α-glucosidase encoded by malL has been known to contribute to maltodextrin metabolism in the cell (40, 41). Schönert et al. (42) reported that maltose is transported by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) in B. subtilis. They also reported that maltodextrins with degrees of polymerization (DP) of 3 to 7 (G3 to G7) are taken up via a maltodextrin-specific (Mdx) ATP-binding cassette (ABC) transport system (42). This system is made up of a maltodextrin-binding protein (MdxE) and two membrane proteins (MdxF and MdxG), as well as an ATPase (MsmX). The basic model proposed for the transport and metabolism of maltooligosaccharides includes a series of carbohydrate-hydrolyzing and -transferring enzymes. However, the enzymatic hydrolysis of maltodextrins and glycogen, providing a major energy reservoir in prokaryotes, was not reflected in the model, due probably to a lack of experimental analysis. Unlike those in Bacillus spp., the transport and metabolic systems for maltodextrins in Escherichia coli have been investigated extensively (7, 9, 10). A model for maltose metabolism involving an α-glucanotransferase (MalQ), a maltodextrin glucosidase (MalZ), and a maltodextrin phosphorylase (MalP) was proposed previously based on analyses of the breakdown of 14C-labeled maltodextrins in various knockout mutants (10).Ninety bacterial genomes were analyzed to identify the enzymes involved in sugar metabolism, and the results suggested that bacterial enzymes for the synthesis and degradation of glycogen belong to the glucosyltransferase and glycosidase/transglycosidase families, respectively. Free-living bacteria such as B. subtilis carry a minimal set of enzymes for glycogen metabolism, encoded by the glg operon of five genes. The four genes most proximal to the promoter encode enzymes for the synthesis of glycogen, including a branching enzyme (glgB), an ADP-glucose phyrophosphorylase (glgC and glcD), and a glycogen synthase (glgA). On the other hand, the most distal gene, glgP, encodes a glycogen phosphorylase (a member of glycosyltransferase family 35) (13, 18), which degrades glycogen branches by forming glucose-1-phosphate (glucose-1-P). B. subtilis carries two additional enzymes encoded at separate loci, a maltogenic amylase (MAase [YvdF, encoded at 304°]) and a pullulanase (AmyX, encoded at 262°), which have been known to degrade glycogen in vitro (15, 31). These two enzymes are ubiquitous among Bacillus spp. and may play an important role in glycogen and maltodextrin metabolism in the bacteria (see Table S1 in the supplemental material).The MAase YvdF in B. subtilis 168 and its homologue in B. subtilis SUH4-2 share 99% identity at both the nucleotide and amino acid sequence levels (4). MAase (EC 3.2.1.133) is a multisubstrate enzyme that acts on substrates such as cyclodextrin (CD), maltooligosaccharides, pullulan, starch, and glycogen (4). MAase belongs to a subfamily of glycoside hydrolase family 13, along with cyclodextrinase (EC 3.2.1.54), neopullulanase (EC 3.2.1.135), and Thermoactinomyces vulgaris R-47 α-amylase II (46). Although the catalytic properties and tertiary structure of MAase have been studied extensively (33), its physiological role in the bacterial cell is yet to be elucidated. The expression pattern of MAase in B. subtilis 168 has been investigated by monitoring the β-galactosidase activity expressed from the yvdF promoter in defined media containing various carbon sources (20). The yvdF promoter is induced in medium containing maltose, starch, or β-CD but is repressed in the presence of glucose, fructose, sucrose, or glycerol as the sole carbon source. In a previous study, Spo0A, a master regulator determining the life cycle of B. subtilis, was shown to be related to the expression of MAase in a positive manner (20). Kiel et al. (18) reported that the glycogen operon in B. subtilis is turned on during sporulation by RNA polymerase containing σE. This finding indicated that MAase, along with glycogen phosphorylase and pullulanase, might be involved in the metabolism of maltodextrin and glycogen in vivo.Pullulanases are capable of hydrolyzing the α-1,6-glycosidic linkages of pullulan to form maltotriose (2, 11, 15, 28, 31, 38). In particular, type I pullulanases have been reported to hydrolyze the α-1,6-glycosidic linkages in branched oligosaccharides such as starch, amylopectin, and glycogen, forming maltodextrins linked by α-1,4-glycosidic linkages (11). Pullulanase is also known as a debranching enzyme. The enzymatic properties and three-dimensional structure of AmyX from B. subtilis 168 were investigated by Malle et al. (28). However, to date, the physiological function of pullulanase encoded by amyX has not been investigated.The aim of this study was to elucidate the physiological functions of MAase and pullulanase, specifically concentrating on their roles in the degradation of maltodextrin and glycogen in B. subtilis. For this purpose, studies of the localization of the enzymes, the accumulation of glycogen, and the distribution of glycogen side chains were performed using the wild type and knockouts of MAase- and pullulanase-related genes.  相似文献   

4.
DNA mismatch repair (MMR) repairs mispaired bases in DNA generated by replication errors. MutS or MutS homologs recognize mispairs and coordinate with MutL or MutL homologs to direct excision of the newly synthesized DNA strand. In most organisms, the signal that discriminates between the newly synthesized and template DNA strands has not been definitively identified. In contrast, Escherichia coli and some related gammaproteobacteria use a highly elaborated methyl-directed MMR system that recognizes Dam methyltransferase modification sites that are transiently unmethylated on the newly synthesized strand after DNA replication. Evolution of methyl-directed MMR is characterized by the acquisition of Dam and the MutH nuclease and by the loss of the MutL endonuclease activity. Methyl-directed MMR is present in a subset of Gammaproteobacteria belonging to the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, and a subset of the Alteromonadales (the EPVAA group) as well as in gammaproteobacteria that have obtained these genes by horizontal gene transfer, including the medically relevant bacteria Fluoribacter, Legionella, and Tatlockia and the marine bacteria Methylophaga and Nitrosococcus.  相似文献   

5.
Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.  相似文献   

6.
Pseudomonas putida G7 carries a naphthalene-catabolic and self-transmissible plasmid, NAH7, which belongs to the IncP-9 incompatibility group. Adjacent to the putative origin of conjugative transfer (oriT) of NAH7 are three genes, traD, traE, and traF, whose functions and roles in conjugation were previously unclear. These three genes were transcribed monocistronically and thus were designated the traD operon. Mutation of the three genes in the traD operon resulted in 10- to 105-fold decreases in the transfer frequencies of the plasmids from Pseudomonas to Pseudomonas and Escherichia coli and from E. coli to E. coli. On the other hand, the traD operon was essential for the transfer of NAH7 from E. coli to Pseudomonas strains. These results indicated that the traD operon is a host-range modifier in the conjugative transfer of NAH7. The TraD, TraE, and TraF proteins were localized in the cytoplasm, periplasm, and membrane, respectively, in strain G7 cells. Our use of a bacterial two-hybrid assay system showed that TraE interacted in vivo with other essential components for conjugative transfer, including TraB (coupling protein), TraC (relaxase), and MpfH (a channel subunit in the mating pair formation system).  相似文献   

7.
This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3′-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases.  相似文献   

8.
9.
There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages.  相似文献   

10.
Feng Y  Chen Z  Liu SL 《PloS one》2011,6(11):e27754

Background

Many facultative bacterial pathogens have undergone extensive gene decay processes, possibly due to lack of selection pressure during evolutionary conversion from free-living to intracellular lifestyle. Shigella, the causative agents of human shigellosis, have arisen from different E. coli-like ancestors independently by convergent paths. As these bacteria all have lost large numbers of genes by mutation or deletion, they can be used as ideal models for systematically studying the process of gene function loss in different bacteria living under similar selection pressures.

Methodologies/Principal Findings

We compared the sequenced Shigella genomes and re-defined decayed genes (pseudogenes plus deleted genes) in these bacteria. Altogether, 85 genes are commonly decayed in the five analyzed Shigella strains and 1456 genes are decayed in at least one Shigella strain. Genes coding for carbon utilization, cell motility, transporter or membrane proteins are prone to be inactivated. Decayed genes tend to concentrate in certain operons rather than distribute averagely across the whole genome. Genes in the decayed operon accumulated more non-synonymous mutations than the rest genes and meanwhile have lower expression levels.

Conclusions

Different Shigella lineages underwent convergent gene decay processes, and inactivation of one gene would lead to a lesser selection pressure for the other genes in the same operon. The pool of superfluous genes for Shigella may contain at least two thousand genes and the gene decay processes may still continue in Shigella until a minimum genome harboring only essential genes is reached.  相似文献   

11.
The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.  相似文献   

12.
The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.  相似文献   

13.
14.
《Gene》1996,174(2):251-258
The biotin operon of Erwinia herbicola was cloned and characterized. The operon consists of five genes arranged in the order, bioABFCD. The operon is negatively regulated via the interaction of a proposed biotin repressor with an operator sequence that lies between the bioA and bioB genes. The nucleotide sequences of bioA (7,8-diaminopelargonic acid transferase), bioB (biotin synthetase) and the regulatory region were determined and analyzed. The deduced amino acid sequences of bioA and bioB are also aligned with currently available homologs to obtain the UPGMA (unweighted pair group method with arithmetic mean) evolutionary tree.  相似文献   

15.
Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL), and when replication progresses, the fork might stall by the binding of the origin binding protein G38P to the late replication origin (oriR). Replication restart is dependent on viral recombination proteins to synthesize a linear head-to-tail concatemer, which is the substrate for viral DNA packaging. To identify new functions involved in this process, uncharacterized genes from phage SPP1 were analyzed. Immediately after infection, SPP1 transcribes a number of genes involved in recombination and replication from P E2 and P E3 promoters. Resequencing the region corresponding to the last two hypothetical genes transcribed from the P E2 operon (genes 44 and 45) showed that they are in fact a single gene, re-annotated here as gene 44, that encodes a single polypeptide, named gene 44 product (G44P, 27.5 kDa). G44P shares a low but significant degree of identity in its C-terminal region with virus-encoded RusA-like resolvases. The data presented here demonstrate that G44P, which is a dimer in solution, binds with high affinity but without sequence specificity to several double-stranded DNA recombination intermediates. G44P preferentially cleaves Holliday junctions, but also, with lower efficiency, replicated D-loops. It also partially complemented the loss of RecU resolvase activity in B. subtilis cells. These in vitro and in vivo data suggest a role for G44P in replication restart during the transition to concatemeric viral replication.  相似文献   

16.
The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites'' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria.  相似文献   

17.
The par region of the stably maintained broad-host-range plasmid RK2 is organized as two divergent operons, parCBA and parDE, and a cis-acting site. parDE encodes a postsegregational killing system, and parCBA encodes a resolvase (ParA), a nuclease (ParB), and a protein of unknown function (ParC). The present study was undertaken to further delineate the role of the parCBA region in the stable maintenance of RK2 by first introducing precise deletions in the three genes and then assessing the abilities of the different constructs to stabilize RK2 in three strains of Escherichia coli and two strains of Pseudomonas aeruginosa. The intact parCBA operon was effective in stabilizing a conjugation-defective RK2 derivative in E. coli MC1061K and RR1 but was relatively ineffective in E. coli MV10Δlac. In the two strains in which the parCBA operon was effective, deletions in parB, parC, or both parB and parC caused an approximately twofold reduction in the stabilizing ability of the operon, while a deletion in the parA gene resulted in a much greater loss of parCBA activity. For P. aeruginosa PAO1161Rifr, the parCBA operon provided little if any plasmid stability, but for P. aeruginosa PAC452Rifr, the RK2 plasmid was stabilized to a substantial extent by parCBA. With this latter strain, parA and res alone were sufficient for stabilization. The cer resolvase system of plasmid ColE1 and the loxP/Cre system of plasmid P1 were tested in comparison with the parCBA operon. We found that, not unlike what was previously observed with MC1061K, cer failed to stabilize the RK2 plasmid with par deletions in strain MV10Δlac, but this multimer resolution system was effective in stabilizing the plasmid in strain RR1. The loxP/Cre system, on the other hand, was very effective in stabilizing the plasmid in all three E. coli strains. These observations indicate that the parA gene, along with its res site, exhibits a significant level of plasmid stabilization in the absence of the parC and parB genes but that in at least one E. coli strain, all three genes are required for maximum stabilization. It cannot be determined from these results whether or not the stabilization effects seen with parCBA or the cer and loxP/Cre systems are strictly due to a reduction in the level of RK2 dimers and an increase in the number of plasmid monomer units or if these systems play a role in a more complex process of plasmid stabilization that requires as an essential step the resolution of plasmid dimers.  相似文献   

18.
An unprecedented global transfer of agricultural resources followed the discovery of the New World; one consequence of this process was that staple food plants of Neotropical origin, such as the common bean (Phaseolus vulgaris), soon expanded their ranges overseas. Yet many pests and diseases were also transported. Acanthoscelides obtectus is a cosmopolitan seed predator associated with P. vulgaris. Codispersal within the host seed seems to be an important determinant of the ability of A. obtectus to expand its range over long distances. We examined the phylogeographic structure of A. obtectus by (a) sampling three mitochondrial gene sequences (12s rRNA, 16s rRNA, and the gene that encodes cytochrome c oxidase subunit I (COI)) throughout most of the species’ range and (b) exploring its late evolutionary history. Our findings indicate a Mesoamerican origin for the current genealogical lineages of A. obtectus. Each of the two major centers of genetic diversity of P. vulgaris (the Andes and Mesoamerica) contains a highly differentiated lineage of the bean beetle. Brazil has two additional, closely related lineages, both of which predate the Andean lineage and have the Mesoamerican lineage as their ancestor. The cosmopolitan distribution of A. obtectus has resulted from recent expansions of the two Brazilian lineages. We present additional evidence for both pre-Columbian and post-Columbian range expansions as likely events that shaped the current distribution of A. obtectus worldwide.  相似文献   

19.
Bacillus subtilis, likeEscherichia coli, possesses several sets of genes involved in the utilization ofβ-glucosides. InE. coli, all these genes are cryptic, including the genes forming thebgl operon, thus leading to a Bgl? phenotype. We screened forB. subtilis chromosomal DNA fragments capable of reverting the Bgl+ phenotype associated with anE. coli hns mutant to the Bgl? wild-type phenotype. OneB. subtilis chromosomal fragment having this property was selected. It contained a putative Ribonucleic AntiTerminator binding site (RAT sequence) upstream from thebglP gene. Deletion studies as well as subcloning experiments allowed us to prove that the putativeB. subtilis bglP RAT sequence was responsible for the repression of theE. coli bgl operon. We propose that this repression results from the titration of the BglG antiterminator protein ofE. coli bgl operon by our putativeB. subtilis bglP RAT sequence. Thus, we report evidence for a new cross interaction between heterologous RAT-antiterminator protein pairs.  相似文献   

20.
Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 on the B. subtilis chromosome, it encodes five poly-peptides with extensive similarity to enzymes involved in glycogen and starch metabolism in both prokaryotes and eukaryotes. The operon is presumably expressed by an EσE-controlled promoter, which was previously identified downstream from trnB. We have observed glycogen biosynthesis in B. subtilis exclusively on media containing carbon sources that allow efficient sporulation. Sporulation-independent synthesis of glycogen occurred after integration of an EσA controlled promoter upstream of the operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号