首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of sarcosine dehydrogenase and acid-nonextractable flavin in the inner matrix of mitochondria of rat liver are decreased in animals treated with triiodothyronine and are elevated in the mitochondria obtained from thyroidectomized animals. Administration of triiodothyronine does not affect the electron-transfer flavoprotein associated with the sarcosine dehydrogenase or the relative amounts of soluble and membrane-bound proteins of the mitochondria. In phosphate-washed mitochondria from either the controls or the triiodothyronine-treated rats, the O2 uptake equals the total of the [14C]formaldehyde and [β-14C]serine isolated as reaction products of the sarcosine-[14C]methyl group. In contrast to its restraint of sarcosine or choline oxidation in preparations capable of oxidative phosphorylation, ADP does not inhibit the oxidation of these substrates in mitochondria of rats given triiodothyronine.  相似文献   

2.
In rat liver mitochondria, swollen with phosphate and supplemented with NAD+, the oxidation of the methyl carbon of sarcosine to formate is enhanced by the addition of NADP+. No carbon dioxide is formed. Formaldehyde and serine, which are the only oxidation products of the methyl group in the absence of the pyridine nucleotides, are decreased by an amount equal to the formate produced. Carbon dioxide, as well as formate, is produced when the mitochondria are treated with EDTA, even without the addition of the pyridine nucleotides. When the mitochondria are exposed to pyrophosphate without added NAD+ and/or NADP+, all of the oxidized sarcosine-methyl can be recovered as formate, [3-C]serine, and carbon dioxide. Formaldehyde accumulates only if the system is supplemented with Mg2+. In the presence of NADP+ or the combined pyridine nucleotides, serine accumulation is depressed by an amount equal to the increase in carbon dioxide production. Both carbons of glycine and the 3-C of serine can also be oxidized to carbon dioxide in the pyrophosphate-treated mitochondria. The oxidation of the methyl carbon of S-adenosylmethionine to formaldehyde, [3-C]serine, formate, and carbon dioxide requires a whole homogenate supplemented with glycine. Neither exogenous formaldehyde nor formate is oxidized to carbon dioxide in any of the mitochondrial systems capable of converting sarcosine-methyl to carbon dioxide. Under conditions in which [N5,N10-14C-methylene]- and [N10-14C-formyl]tetrahydrofolate can be isolated as intermediate products of [14CH3]sarcosine, exogenous [N5,N10-14C-methylene]tetrahydrofolate can also be converted to [3-14C]serine, [14C]formate, and [14C]carbon dioxide.  相似文献   

3.
4.
The formation of the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase in Clostridium thermoaceticum is stimulated by the presence of molybdate and selenite in the growth medium. The highest formate dehydrogenase activity was obtained with 2.5 × 10−4 M Na2MoO4 and 5 × 10−5 Na2SeO3. Tungstate but not vanadate could replace molybdate and stimulate the formation of formate dehydrogenase. Tungstate stimulated activity more than molybdate, and in combination with molybdate the stimulation of formation of formate dehydrogenase was additive. Formate dehydrogenase was isolated from cells grown in the presence of Na275SeO2, and a correlation was observed between bound 75Se and enzyme activity.  相似文献   

5.
The ribulose monophosphate cycle methylotroph Methylobacillus flagellatum was grown under oxyturbidostat conditions on mixtures of methanol and formaldehyde. Formaldehyde when added at low concentration (50 mg/l) increased the methanol consumption and the yield of biomass. The presence of 150–300 mg/l of formaldehyde resulted in an increase of the growth rate from 0.74 to about 0.79–0.82 h-1. The presence of 500 mg/l of formaldehyde in the inflow decreased culture growth characteristics. Activities of methanol dehydrogenase and enzymes participating in formaldehyde oxidation and assimilation were measured. The enzymological profiles obtained are discussed.Abbreviations MDH methanol dehydrogenase - NAD-linked FDDH NAD-linked formaldehyde dehydrogenase - DLFDDH dye-linked formaldehyde dehydrogenase - DLFDH dye-linked formate dehydrogenase - GPDH glucose-6-phosphate dehydrogenase - PGDH 6-phosphogluconate dehydrogenase - RuMP cycle ribulose monophosphate cycle  相似文献   

6.
We present in vitro evidence for a novel intercompartmental pathway in which folate-mediated reactions in mitochondria generate one-carbon units for utilization in cytoplasmic processes. Rat liver mitochondria are shown to contain the enzymatic activities for catabolism of serine or sarcosine to produce formate. Intact mitochondria rapidly convert the 3-carbon of serine or the N-methyl group of sarcosine to formate, which exits the mitochondria. Labeled formate is incorporated into purine by a cytoplasmic purine synthesizing system only after activation to 10-formyl-THF via the ATP-dependent 10-formyl-THF synthetase reaction. In a coupled system where one-carbon donors are catabolized by mitochondria before addition to the cytoplasmic purine synthesizing system, incorporation into purine shows a marked dependence on ATP. These observations demonstrate that mitochondria can metabolize one-carbon donors via THF-dependent reactions to the level of formate which then exits mitochondria for utilization in the cytoplasm. The proposed pathway is discussed in relation to genetic evidence for its operation in vivo as well as compartmentation of folate coenzymes and their one-carbon units.  相似文献   

7.
Choline dehydrogenase (EC 1.1.99.1) catalyzes the four-electron oxidation of choline to glycine-betaine via a betaine-aldehyde intermediate. Such a reaction is of considerable interest for biotechnological applications in that transgenic plants engineered with bacterial glycine-betaine-synthesizing enzymes have been shown to have enhanced tolerance towards various environmental stresses, such as hypersalinity, freezing, and high temperatures. To date, choline dehydrogenase has been poorly characterized in its biochemical and kinetic properties, mainly because its purification has been hampered by instability of the enzyme in vitro. In the present report, we cloned and expressed in Escherichia coli the betA gene from the moderate halophile Halomonas elongata which codes for a hypothetical choline dehydrogenase. The recombinant enzyme was purified to more than 70% homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by treatment with 30 to 50% saturation of ammonium sulfate followed by column chromatography using DEAE-Sepharose. The purified enzyme showed similar substrate specificities with either choline or betaine-aldehyde as the substrate, as indicated by the apparent V/K values (where V is the maximal velocity and K is the Michaelis constant) of 0.9 and 0.6 μmol of O2 min−1 mg−1 mM−1 at pH 7 and 25°C, respectively. With 1 mM phenazine methosulfate as the primary electron acceptor, the apparent Vmax values for choline and betaine-aldehyde were 10.9 and 5.7 μmol of O2 min−1 mg−1, respectively. These Vmax values decreased four- to sevenfold when molecular oxygen was used as the electron acceptor. Altogether, the kinetic data are consistent with the conclusion that H. elongata betA codes for a choline dehydrogenase that can also act as an oxidase when electron acceptors other than molecular oxygen are not available.  相似文献   

8.
9.
Production of β-lactams by the filamentous fungus Penicillium chrysogenum requires a substantial input of ATP. During glucose-limited growth, this ATP is derived from glucose dissimilation, which reduces the product yield on glucose. The present study has investigated whether penicillin G yields on glucose can be enhanced by cofeeding of an auxiliary substrate that acts as an energy source but not as a carbon substrate. As a model system, a high-producing industrial strain of P. chrysogenum was grown in chemostat cultures on mixed substrates containing different molar ratios of formate and glucose. Up to a formate-to-glucose ratio of 4.5 mol·mol−1, an increasing rate of formate oxidation via a cytosolic NAD+-dependent formate dehydrogenase increasingly replaced the dissimilatory flow of glucose. This resulted in increased biomass yields on glucose. Since at these formate-to-glucose ratios the specific penicillin G production rate remained constant, the volumetric productivity increased. Metabolic modeling studies indicated that formate transport in P. chrysogenum does not require an input of free energy. At formate-to-glucose ratios above 4.5 mol·mol−1, the residual formate concentrations in the cultures increased, probably due to kinetic constraints in the formate-oxidizing system. The accumulation of formate coincided with a loss of the coupling between formate oxidation and the production of biomass and penicillin G. These results demonstrate that, in principle, mixed-substrate feeding can be used to increase the yield on a carbon source of assimilatory products such as β-lactams.  相似文献   

10.
Formate can differentiate between hyperhomocysteinemia due to impaired remethylation and impaired transsulfuration. Am J Physiol Endocrinol Metab 301: E000-E000, 2011. First published September 20, 2011; 10.1152/ajpendo.00345.2011.-We carried out a (1)H-NMR metabolomic analysis of sera from vitamin B(12)-deficient rats. In addition to the expected increases in methylmalonate and homocysteine (Hcy), we observed an approximately sevenfold increase in formate levels, from 64 μM in control rats to 402 μM in vitamin B(12)-deficient rats. Urinary formate was also elevated. This elevation of formate could be attributed to impaired one-carbon metabolism since formate is assimilated into the one-carbon pool by incorporation into 10-formyl-THF via the enzyme 10-formyl-THF synthase. Both plasma and urinary formate were also increased in folate-deficient rats. Hcy was elevated in both the vitamin B(12)- and folate-deficient rats. Although plasma Hcy was also elevated, plasma formate was unaffected in vitamin B(6)-deficient rats (impaired transsulfuration pathway). These results were in accord with a mathematical model of folate metabolism, which predicted that reduction in methionine synthase activity would cause increased formate levels, whereas reduced cystathionine β-synthase activity would not. Our data indicate that formate provides a novel window into cellular folate metabolism, that elevated formate can be a useful indicator of deranged one-carbon metabolism and can be used to discriminate between the hyperhomocysteinemia caused by defects in the remethylation and transsulfuration pathways.  相似文献   

11.
Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2−/−) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2−/− hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2+/−) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2+/− mice were far less hypertensive than Grx2−/− mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease.  相似文献   

12.
Formaldehyde can be oxidized primarily by two different enzymes, the low-Km mitochondrial aldehyde dehydrogenase and the cytosolic GSH-dependent formaldehyde dehydrogenase. Experiments were carried out to evaluate the effects of diethyl maleate or phorone, agents that deplete GSH from the liver, on the oxidation of formaldehyde. The addition of diethyl maleate or phorone to intact mitochondria or to disrupted mitochondrial fractions produced inhibition of formaldehyde oxidation. The kinetics of inhibition of the low-Km mitochondrial aldehyde dehydrogenase were mixed. Mitochondria isolated from rats treated in vivo with diethyl maleate or phorone had a decreased capacity to oxidize either formaldehyde or acetaldehyde. The activity of the low-Km, but not the high-Km, mitochondrial aldehyde dehydrogenase was also inhibited. The production of CO2 plus formate from 0.2 mM-[14C]formaldehyde by isolated hepatocytes was only slightly inhibited (15-30%) by incubation with diethyl maleate or addition of cyanamide, suggesting oxidation primarily via formaldehyde dehydrogenase. However, the production of CO2 plus formate was increased 2.5-fold when the concentration of [14C]formaldehyde was raised to 1 mM. This increase in product formation at higher formaldehyde concentrations was much more sensitive to inhibition by diethyl maleate or cyanamide, suggesting an important contribution by mitochondrial aldehyde dehydrogenase. Thus diethyl maleate and phorone, besides depleting GSH, can also serve as effective inhibitors in vivo or in vitro of the low-Km mitochondrial aldehyde dehydrogenase. Inhibition of formaldehyde oxidation by these agents could be due to impairment of both enzyme systems known to be capable of oxidizing formaldehyde. It would appear that a critical amount of GSH, e.g. 90%, must be depleted before the activity of formaldehyde dehydrogenase becomes impaired.  相似文献   

13.
The physiological role of dihydroxyacetone synthase (DHAS) in Candida boidinii was evaluated at the molecular level. The DAS1 gene, encoding DHAS, was cloned from the host genome, and regulation of its expression by various carbon and nitrogen sources was analyzed. Western and Northern analyses revealed that DAS1 expression was regulated mainly at the mRNA level. The regulatory pattern of DHAS was similar to that of alcohol oxidase but distinct from that of two other enzymes in the formaldehyde dissimilation pathway, glutathione-dependent formaldehyde dehydrogenase and formate dehydrogenase. The DAS1 gene was disrupted in one step in the host genome (das1Δ strain), and the growth of the das1Δ strain in various carbon and nitrogen sources was compared with that of the wild-type strain. The das1Δ strain had completely lost the ability to grow on methanol, while the strain with a disruption of the formate dehydrogenase gene could survive (Y. Sakai et al., J. Bacteriol. 179:4480–4485, 1997). These and other experiments (e.g., those to determine the expression of the gene and the growth ability of the das1Δ strain on media containing methylamine or choline as a nitrogen source) suggested that DAS1 is involved in assimilation rather than dissimilation or detoxification of formaldehyde in the cells.  相似文献   

14.
Pichia pastoris KM71H (MutS) is an efficient producer of hard-to-express proteins such as the membrane protein P-glycoprotein (Pgp), an ATP-powered efflux pump which is expressed properly, but at very low concentration, using the conventional induction strategy. Evaluation of different induction strategies indicated that it was possible to increase Pgp expression by inducing the culture with 20% media containing 2.5% methanol. By quantifying methanol, formaldehyde, hydrogen peroxide and formate, and by measuring alcohol oxidase, catalase, formaldehyde dehydrogenase, formate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenases, it was possible to correlate Pgp expression to the induction strategy. Inducing the culture by adding methanol with fresh media was associated with decreases in formaldehyde and hydrogen peroxide, and increases in formaldehyde dehydrogenase, formate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenases. At these conditions, Pgp expression was 1400-fold higher, an indication that Pgp expression is affected by increases in formaldehyde and hydrogen peroxide. It is possible that Pgp is responsible for this behaviour, since the increased metabolite concentrations and decreased enzymatic activities were not observed when parental Pichia was subjected to the same growth conditions. This report adds information on methanol metabolism during expression of Pgp from P. pastoris MutS strain and suggests an expression procedure for hard-to-express proteins from P. pastoris.  相似文献   

15.
The interconversion of glycine and serine by plant tissue extracts   总被引:16,自引:5,他引:11       下载免费PDF全文
1. Extracts prepared from a variety of higher-plant tissues by ammonium sulphate fractionation were shown to catalyse the interconversion of glycine and serine. This interconversion had an absolute requirement for tetrahydrofolate and appeared to favour serine formation. 2. The biosynthesis of serine from glycine was studied in more detail with protein fractionated from 15-day-old wheat leaves. Synthesis of [14C]serine from [14C]glycine was not accompanied by labelling of glyoxylate, glycollate or formate. 3. The synthesis of serine from glycine was stimulated by additions of formaldehyde, and [14C]formaldehyde was readily incorporated into C-3 of serine in the presence of tetrahydrofolate. 4. The results are interpreted as indicating that serine biosynthesis involves a direct cleavage of glycine whereby the α-carbon is transferred via N5N10-methylenetetrahydrofolate to become the β-carbon of serine.  相似文献   

16.
Mesenchymal stem cell (MSC)-based therapy has emerged as a novel strategy to treat many degenerative diseases. Accumulating evidence shows that the function of MSCs declines with age, thus limiting their regenerative capacity. Nonetheless, the underlying mechanisms that control MSC ageing are not well understood. We show that compared with bone marrow-MSCs (BM-MSCs) isolated from young and aged samples, NADH dehydrogenase (ubiquinone) iron-sulfur protein 6 (Ndufs6) is depressed in aged MSCs. Similar to that of Ndufs6 knockout (Ndufs6−/−) mice, MSCs exhibited a reduced self-renewal and differentiation capacity with a tendency to senescence in the presence of an increased p53/p21 level. Downregulation of Ndufs6 by siRNA also accelerated progression of wild-type BM-MSCs to an aged state. In contrast, replenishment of Ndufs6 in Ndufs6−/−-BM-MSCs significantly rejuvenated senescent cells and restored their proliferative ability. Compared with BM-MSCs, Ndufs6−/−-BM-MSCs displayed increased intracellular and mitochondrial reactive oxygen species (ROS), and decreased mitochondrial membrane potential. Treatment of Ndufs6−/−-BM-MSCs with mitochondrial ROS inhibitor Mito-TEMPO notably reversed the cellular senescence and reduced the increased p53/p21 level. We provide direct evidence that impairment of mitochondrial Ndufs6 is a putative accelerator of adult stem cell ageing that is associated with excessive ROS accumulation and upregulation of p53/p21. It also indicates that manipulation of mitochondrial function is critical and can effectively protect adult stem cells against senescence.Subject terms: Ageing, Stem-cell research  相似文献   

17.
Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE −/−) mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE −/− macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE −/− macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR), Akt, and extracellular signal-related kinase (ERK). Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE −/− macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE −/− cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE −/− macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE −/− macrophages showed increased reactive oxygen species (ROS) production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress.  相似文献   

18.
In a previous study with Methanobacterium thermoautotrophicum evidence was presented that methanogenesis and autotrophic synthesis of activated acetic acid from CO2 are linked processes. In this study one-carbon metabolism was investigated with growing cultures and in vitro.Serine was shown to be converted into glycine and activated formaldehyde, but only traces of label from [14C-3] of serine appeared in biosynthetic one-carbon positions. This seeming discrepancy could be explained if the same activated formaldehyde is an intermediate in biosynthesis and in methanogenesis from CO2. This hypothesis was supported by demonstrating that [14C-3] of serine and [14C] formaldehyde were rapidly converted into methane, but a small portion of the label was also specifically incorporated into the methyl group of acetate. Methane and acetate synthesis in vitro were similarly stimulated by various compounds. These experiments indicate that the methyl of acetate and methane share common one-carbon precursor(s), i.e. methylene tetrahydromethanopterin, which can also be formed enzymatically from C-3 of serine or chemically from formaldehyde.Propyl iodide 20–40 M) and methyl iodide (1–3 M) completely inhibited growth in the dark. This effect was abolished by light. Methane formation was hardly affected. When 14CH3I was applied at an only slightly inhibitory concentration, 14C was incorporated into the methyl of acetate. In vitro, similar effects on [14C] acetate formation from 14CO2 or from [14C-3] of serine were observed, except that methyl iodide did not inhibit, but even stimulated acetate synthesis. These experiments indicate that a corrinoid is involved in acetate synthesis and probably not in methanogenesis from CO2; the metal is light-reversibly alkylated and functions in methyl transfer to the acetate methyl.  相似文献   

19.
Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of −19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline accumulation. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline—remained at a high concentration in drought-killed leaf zones, but betaine did not disappear as rapidly as proline from viable leaf tissue during recovery.

When [methyl-14C]choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more 14C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of [14C]formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more 14C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with [14C]formate for about 18 hours in darkness, betaine was always the principal 14C-labeled soluble metabolite. This 14C label was located exclusively in the N-methyl groups of betaine, demonstrating that reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of 14C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from [14C]formate.

These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress, and indicate that the betaine so accumulated may be a metabolically inert end product.

  相似文献   

20.
Minute amounts of oxygen were supplied to a continuous cultivation of Lactococcus lactis subsp. cremoris MG1363 grown on a defined glucose-limited medium at a dilution rate of 0.1 h−1. More than 80% of the carbon supplied with glucose ended up in fermentation products other than lactate. Addition of even minute amounts of oxygen increased the yield of biomass on glucose by more than 10% compared to that obtained under anaerobic conditions and had a dramatic impact on catabolic enzyme activities and hence on the distribution of carbon at the pyruvate branch point. Increasing aeration caused carbon dioxide and acetate to replace formate and ethanol as catabolic end products while hardly affecting the production of either acetoin or lactate. The negative impact of oxygen on the synthesis of pyruvate formate lyase was confirmed. Moreover, oxygen was shown to down regulate the protein level of alcohol dehydrogenase while increasing the enzyme activity levels of the pyruvate dehydrogenase complex, α-acetolactate synthase, and the NADH oxidases. Lactate dehydrogenase and glyceraldehyde dehydrogenase enzyme activity levels were unaffected by aeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号