首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adiponectin is a major adipocytokine secreted from mammalian adipocytes. Relatively low expression of adiponectin is associated with various human metabolic diseases and some cancers. Adiponectin-secreting compounds have therapeutic potential for these diseases. Adipogenesis of human bone marrow-mesenchymal stem cells (hBM-MSCs) has been used as a phenotypic assay to find adiponectin secreting compounds. In a phytochemical library screen, 2-formyl-komarovicine, 1-(quinolin-8-yl)-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indole-2-carbaldehyde, isolated from Nitraria komarovii was identified as a potential adiponectin-secreting compound. To validate the results of the impure phytochemical, we synthesized 2-formyl-komarovicine. The synthetic 2-formyl-komarovicine significantly promoted adiponectin production during adipogenesis in hBM-MSCs. In a target identification experiment, 2-formyl-komarovicine bound to peroxisome proliferator-activated receptor γ (PPARγ) in a concentration-dependent manner. Notably, 2-formyl-komarovicine competitively inhibited the adiponectin-promoting activity of a full PPARγ agonist, troglitazone, in hBM-MSCs, which is a pharmacological feature of a partial agonist. The ligand-docking model showed that 2-formyl-komarovicine interacted with the hydrophobic pocket of the PPARγ ligand-binding domain, but lacked an interaction to stabilize helix H12, which is one of the major binding themes of PPARγ partial agonists. We concluded that 2-formyl-komarovicine provides a novel pharmacophore for PPARγ partial agonists to increase adiponectin production.  相似文献   

2.
Acetyl-CoA carboxylases (ACCs) catalyze a critical step in de novo lipogenesis, and are considered as promising targets for treatment of obesity, dyslipidemia and type 2 diabetes mellitus. On the other hand, peroxisome proliferator-activated receptors (PPARs) are well-established therapeutic targets for these metabolic syndrome-related diseases. Therefore, we considered that dual modulators of ACC and PPARs would be promising candidates as therapeutic agents. Here, we designed a series of acetamides based on the molecular similarity between ACC inhibitors and PPAR agonists. Screening of the synthesized compounds identified N-(1-(3-(4-phenoxyphenyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamides as novel ACC2 inhibitors with PPARα/PPARδ dual agonistic activity. Structure–activity relationship studies and further structural elaboration afforded compounds with distinct activity profiles. Our findings should be helpful for the discovery of candidate agents with an appropriate balance of ACC-inhibitory and PPAR-activating activities for therapeutic lipid control.  相似文献   

3.
N6-(3-Iodobenzyl)adenosine-5′-N-methyluronamide (1a, IB-MECA) exhibited polypharmacological characteristics targeting A3 adenosine receptor (AR), peroxisome proliferator-activated receptor (PPAR) γ, and PPARδ, simultaneously. The bioisosteric replacement of oxygen in 4′-oxoadenosines with selenium significantly increased the PPARδ-binding activity. 2-Chloro-N6-(3-iodobenzyl)-4′-selenoadenosine-5′-N-methyluronamide (3e) and related 4′-selenoadenosine derivatives significantly enhanced adiponectin biosynthesis during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). The PPARδ-binding affinity, but not the A3 AR binding affinity, of 4′-selenoadenosine derivatives correlated with their adiponectin secretion stimulation. Compared with the sugar ring of 4′-oxoadenosine, that of 4′-selenoadenosine was more favorable in forming the South sugar conformation. In the molecular docking simulation, the South sugar conformation of compound 3e formed additional hydrogen bonds inside the PPARδ ligand-binding pocket compared with the North conformation. Therefore, the sugar conformation of 4′-selenoadenosine PPAR modulators affects the ligand binding affinity against PPARδ.  相似文献   

4.
The concept of dual PPARα/γ activation was originally proposed as a new approach for the treatment of the metabolic syndrome. However, recent results indicated that PPARα as well as PPARγ activation might also be beneficial in the treatment of inflammatory diseases and cancer. We have recently identified aminothiazole-featured pirinixic acids as dual 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors. Here we present the structure–activity relationship of these aminothiazole-featured pirinixic acids as dual PPARα/γ agonists and discuss their advantages with their potential as dual 5-LO/mPGES-1 inhibitors in inflammatory and cancer diseases. Various pirinixic acid derivatives had already been identified as dual PPARα/γ agonists. However, within this series of aminothiazole-featured pirinixic acids we were able to identify the most potent selective PPARγ agonistic pirinixic acid derivative (compound 13, (2-[(4-chloro-6-{[4-(naphthalen-2-yl)-1,3-thiazol-2-yl]amino}pyrimidin-2-yl)sulfanyl]octanoic acid)). Therefore, docking of 13 on PPARγ was performed to determine the potential binding mode.  相似文献   

5.
The reduced activation of PPARs has a positive impact on cancer cell growth and viability in multiple preclinical tumor models, suggesting a new therapeutic potential for PPAR antagonists. In the present study, the benzothiazole amides 2a-g were synthesized and their activities on PPARs were investigated. Transactivation assay showed a moderate activity of the novel compounds as PPARα antagonists. Notably, in cellular assays they exhibited cytotoxicity in pancreatic, colorectal and paraganglioma cancer cells overexpressing PPARα. In particular, compound 2b showed the most remarkable inhibition of viability (greater than 90%) in two paraganglioma cell lines, with IC50 values in the low micromolar range. In addition, 2b markedly impaired colony formation capacity in the same cells. Taken together, these results show a relevant anti-proliferative potential of compound 2b, which appears particularly effective in paraganglioma, a rare tumor poorly responsive to chemotherapy.  相似文献   

6.
7.
Adiponectin is an adipokine secreted by adipocytes and plays a role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. Several studies have shown that upregulation of adiponectin has a number of therapeutic benefits. Although peroxisome proliferator-activated receptor γ (PPARγ) agonists are known to increase adiponectin secretion both in cultured adipocytes and humans, they have several side effects, such as weight gain, congestive heart failure, and edema. Therefore, adiponectin secretion modulators that do not possess PPARγ agonistic activity seem to promising for a number of conditions. Here, the authors report on the development of a reporter-based high-throughput screening (HTS) assay using insulin-resistant-mimic 3T3-L1 adipocytes for discovery of adiponectin secretion modulators. They screened a library of approximately 100 000 small-molecule compounds using this model, performed several follow-up screens, and identified six hit compounds that increase adiponectin secretion without having PPARγ agonistic activity. These compounds may be useful drug candidates for diabetes, obesity, atherosclerosis, and other metabolic syndromes. This HTS assay might be applicable to screening for other adipokine modulators that can be useful for the treatment of other conditions.  相似文献   

8.
A new diarylheptanoid, (5S)-hydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-hepta-1E-en-3-one (1), was isolated along with seventeen known diarylheptanoids (218) from the methanol extract of Alnus hirsuta f. sibirica leaves using bioactivity-guided fractionation. Among the isolated compounds, compounds 1 and 2 and 412 reduced lipid accumulation dose-dependently in 3T3-L1 preadipocytes. Of the compounds active in the present assay system, the most potent compound 7, platyphyllonol-5-O-β-d-xylopyranoside, significantly suppressed the induction of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer binding protein α (C/EBPα) protein expression, and inhibited adipocyte differentiation induced by troglitazone, a PPARγ agonist. It was demonstrated that compound 7 has anti-adipogenic activity mediated by the regulation of PPARγ dependent pathways.  相似文献   

9.
Peroxisome proliferator-activated receptors (PPARs) are involved in the control of carbohydrate and lipid metabolism and are considered important targets to treat diabetes mellitus and metabolic syndrome. The available PPAR ligands have several side effects leading to health risks justifying the search for new bioactive ligands to activate the PPAR subtypes, in special PPARδ, the less studied PPAR isoform. Here, we used a structure-based virtual screening protocol in order to find out new PPAR ligands. From a lead-like subset of purchasable compounds, we identified 5 compounds with potential PPAR affinity and, from preliminary in vitro assays, 4 of them showed promising biological activity. Therefore, from our in silico and in vitro protocols, new PPAR ligands are potential candidates to treat metabolic diseases.  相似文献   

10.
11.
AimsPrevious studies showed that natural prenyloxyphenylpropanoid derivatives have potent biological properties in vivo. Given the structural similarities between these compounds and known peroxisome proliferator-activated receptor (PPAR) agonists, the present study examined the hypothesis that propenoic acid derivatives activate PPARs.Main methodsChimeric reporter assays were performed to identify propenoic acid derivates that could activate PPARs. Quantitative polymerase chain reaction (qPCR) analysis of wild-type and Pparβ/δ-null mouse primary keratinocytes was performed to determine if a test compound could specifically activate PPARβ/δ. A human epithelial carcinoma cell line and primary mouse keratinocytes were used to determine the effect of the compound on cell proliferation.Key findingsThree of the propenoic acid derivatives activated PPARs, with the greatest efficacy being observed with prenyloxycinnamic acid derivatives 4′-geranyloxyferulic acid (compound 1) for PPARβ/δ. Compound 1 increased expression of a known PPARβ/δ target gene through a mechanism that requires PPARβ/δ. Inhibition of cell proliferation by compound 1 was found in a human epithelial carcinoma cell line.SignificanceResults from these studies demonstrate that compound 1 can activate PPARβ/δ and inhibit cell proliferation of a human skin cancer cell line, suggesting that the biological effects of 4′-geranyloxyferulic acid may be mediated in part by activating this PPAR isoform.  相似文献   

12.
13.
Compound {4-[({4-[(Z)-(2,4-dioxo-1,3-thiazolidin-5-ylidene)methyl]phenoxy}acetyl)amino]phenoxy}acetic acid (1) was prepared and the in vitro relative expression of PPARγ, GLUT-4 and PPARα, was estimated. Compound 1 showed an increase of 2-fold in the mRNA expression of PPARγ isoform, as well as the GLUT-4 levels. The antidiabetic activity of compound 1 was determined at 50 mg/Kg single dose using a non insulin dependent diabetes mellitus (NIDDM) rat model. The in vivo results indicated a significant decrease of plasma glucose levels, during the 7 h post-administration. Also, we performed a molecular docking of compound 1 into the ligand binding pocket of PPARγ, showing important short contacts with residues Ser289, His323 and His449 in the active site.  相似文献   

14.
Starting with a subtle blood glucose-lowering effect of a TGF-β inhibitor, we designed and synthesized a series of benzoylpyrrole-based carboxylic acids as PPARs activators. Among these compounds, 10sNa exhibited favorable blood glucose-lowering effect without body weight gain. We assume that the beneficial effect of 10sNa is attributed to not only its compound PPARα agonistic activity but also its PPARγ partial agonistic activity.  相似文献   

15.
16.
17.
18.
Due to toxicity problems, various plant-derived compounds have been screened to find the chemotherapeutic agents. As anticancer therapeutic agents, chalcones have advantages such as poor interaction with DNA and low risk of mutagenesity. Chromenones show anticancer activities too. Therefore, hybrids of chalcone and chromenone may be potent chemotherapeutic agents. We prepared 16 synthetic chromenylchalcones and applied a clonogenic long-term survival assay method for them on HCT116 human colorectal cancer cell lines. One of chromenylchalcones tested here, chromenylchalcone 11, showed IC50 of 93.1 nM which can be competed with the IC50 values of well-known flavonoids such as catechin gallate and epicatechin gallate. Further biological experiments including cell cycle analysis, apoptosis assay, Western blot analysis, and immunofluorescent microscopy were carried out for this compound. In addition, in vitro kinases binding assay performed to explain its molecular mechanism demonstrated the compound inhibited aurora kinases. The binding modes between chromenylchalcone 11 and aurora kinases were elucidated using in silico docking experiments. These findings could be used for designing cancer therapeutic or preventive plant-derived chromenylchalcone agents.  相似文献   

19.
20.
We previously published on the design and synthesis of novel, potent and selective PPARα antagonists suitable for either i.p. or oral in vivo administration for the potential treatment of cancer. Described herein is SAR for a subsequent program, where we set out to identify selective and potent PPARα/δ dual antagonist molecules. Emerging literature indicates that both PPARα and PPARδ antagonism may be helpful in curbing the proliferation of certain types of cancer. This dual antagonism could also be used to study PPARs in other settings. After testing for selective and dual potency, off-target counter screening, metabolic stability, oral bioavailability and associated toxicity, compound 11, the first reported PPARα/δ dual antagonist was chosen for more advanced preclinical evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号