首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of natural products has speeded up drug discovery process by minimizing the time for their purification from natural source. Several diseases like Alzheimer's disease (AD) demand exploring multi targeted drug candidates, and for the first time we report the multi AD target inhibitory potential of synthesized dihydroactinidiolide (DA). Though the activity of DA in several solvent extracts have been proved to possess free radical scavenging, anti bacterial and anti cancer activities, its neuroprotective efficacy has not been evidenced yet. Hence DA was successfully synthesized from β-ionone using facile two-step oxidation method. It showed potent acetylcholinesterase (AChE) inhibition with half maximal inhibitory concentration (IC50) 34.03 nM, which was further supported by molecular docking results showing strong H bonding with some of the active site residues such as GLY117, GLY119 and SER200 of AChE. Further it displayed DPPH and (.NO) scavenging activity with IC50 value 50 nM and metal chelating activity with IC50 >270 nM. Besides, it significantly prevented amyloid β25-35 self-aggregation and promoted its disaggregation at 270 nM. It did not show cytotoxic effect towards Neuro2a (N2a) cells up to 24 h at 50 and 270 nM while it significantly increased viability of amyloid β25-35 treated N2a cells through ROS generation at both the concentrations. Cytotoxicity profile of DA against human PBMC was quite impressive. Hemolysis studies also revealed very low hemolysis i.e. minimum 2.35 to maximum 5.61%. It also had suitable ADME properties which proved its druglikeness. The current findings demand for further in vitro and in vivo studies to develop DA as a multi target lead against AD.  相似文献   

2.
We previously showed that classical 6-substituted pyrrolo[2,3-d]pyrimidine antifolates bind to folate receptor (FR) α and the target purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFTase) with different cis and trans conformations. In this study, we designed novel analogs of this series with an amide moiety in the bridge region that can adopt both the cis and trans lowest energy conformations. This provides entropic benefit, by restricting the number of side-chain conformations of the unbound ligand to those most likely to promote binding to FRα and the target enzyme required for antitumor activity. NMR of the most active compound 7 showed both cis and trans amide bridge conformations in ~1:1 ratio. The bridge amide group in the best docked poses of 7 in the crystal structures of FRα and GARFTase adopted both cis and trans conformations, with the lowest energy conformations predicted by Maestro and evidenced by NMR within 1 kcal/mol. Compound 7 showed ~3-fold increased inhibition of FRα-expressing cells over its non-restricted parent analog 1 and was selectively internalized by FRα over the reduced folate carrier (RFC), resulting in significant in vitro antitumor activity toward FRα-expressing KB human tumor cells. Antitumor activity of 7 was abolished by treating cells with adenosine but was incompletely protected by 5-aminoimidazole-4-carboxamide (AICA) at higher drug concentrations, suggesting GARFTase and AICA ribonucleotide formyltransferase (AICARFTase) in de novo purine biosynthesis as the likely intracellular targets. GARFTase inhibition by compound 7 was confirmed by an in situ cell-based activity assay. Our results identify a “first-in-class” classical antifolate with a novel amide linkage between the scaffold and the side chain aryl L-glutamate that affords exclusive selectivity for transport via FRα over RFC and antitumor activity resulting from inhibition of GARFTase and likely AICARFTase. Compound 7 offers significant advantages over clinically used inhibitors of this class that are transported by the ubiquitous RFC, resulting in dose-limiting toxicities.  相似文献   

3.
It has been very recently shown how naturally occurring oxyprenylated coumarins are effective modulators of melanogenesis. In this short communication we wish to generalize the potentialities as skin tanning or whitening agents of a wider panel of natural and semisynthetic aromatic compounds, including coumarins, cinnamic and benzoic acids, cinnamaldehydes, benzaldehyde, and anthraquinone derivatives. A total number of 43 compounds have been tested assaying their capacity to inhibit or stimulate melanin biosynthesis in cultured murine Melan A cells. The wider number of chemicals herein under investigation allowed to depict a detailed structure-activity relationship, as the following: (a) benzoic acid derivatives are slightly pigmenting agent, for which the effect is more pronounced in compounds with longer O-side chains; (b) independently from the type of substitution, cinnamic acids are able to increase melanin biosynthesis, while benzaldehydes are able to decrease it; (c) coumarins with a 3,3-dimethylallyl or shorter skeletons as substituents in position 7 are tanning agents, while coumarins with farnesyloxy groups are whitening ones; (d) double oxyprenylation in position 6 and 7 and 3,3-dimethylallyl or geranyl skeletons have slight depigmenting capacities, while farnesyl skeletons tend to marginally increase the tanning effect; (e) the presence of electron withdrawing groups (acetyl, COOH, and -Cl) and geranyl or farnesyl oxyprenylated chains respectively in positions 3 and 7 of the coumarin nucleus lead to a whitening effect, and finally (f) oxyprenylated anthraquinones have only a weak depigmenting capacity.  相似文献   

4.
A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.  相似文献   

5.
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.  相似文献   

6.
The continuous emergence and rapid spread of a multidrug-resistant strain of bacterial pathogens have demanded the discovery and development of new antibacterial agents. A highly conserved prokaryotic cell division protein FtsZ is considered as a promising target by inhibiting bacterial cytokinesis. Inhibition of FtsZ assembly restrains the cell-division complex known as divisome, which results in filamentation, leading to lysis of the cell. This review focuses on details relating to the structure, function, and influence of FtsZ in bacterial cytokinesis. It also summarizes on the recent perspective of the known natural and synthetic inhibitors directly acting on FtsZ protein, with prominent antibacterial activities. A series of benzamides, trisubstituted benzimidazoles, isoquinolene, guanine nucleotides, zantrins, carbonylpyridine, 4 and 5-Substituted 1-phenyl naphthalenes, sulindac, vanillin analogues were studied here and recognized as FtsZ inhibitors that act either by disturbing FtsZ polymerization and/or GTPase activity. Doxorubicin, from a U.S. FDA, approved drug library displayed strong interaction with FtsZ. Several of the molecules discussed, include the prodrugs of benzamide based compound PC190723 (TXA-709 and TXA707). These molecules have exhibited the most prominent antibacterial activity against several strains of Staphylococcus aureus with minimal toxicity and good pharmacokinetics properties. The evidence of research reports and patent documentations on FtsZ protein has disclosed distinct support in the field of antibacterial drug discovery. The pressing need and interest shall facilitate the discovery of novel clinical molecules targeting FtsZ in the upcoming days.  相似文献   

7.
A small library of antiplasmodial methoxy-thiazinoquinones, rationally designed on the model of the previously identified hit 1, has been prepared by a simple and inexpensive procedure. The synthetic derivatives have been subjected to in vitro pharmacological screening, including antiplasmodial and toxicity assays. These studies afforded a new lead candidate, compound 9, endowed with higher antiplasmodial potency compared to 1, a good selectivity index when tested against a panel of mammalian cells, no toxicity against RBCs, a synergistic antiplasmodial action in combination with dihydroartemisinin, and a promising inhibitory activity on stage V gametocyte growth. Computational studies provided useful insights into the structural requirements needed for the antiplasmodial activity of thiazinoquinone compounds and on their putative mechanism of action.  相似文献   

8.
Coumarins of synthetic or natural origins are an important chemical class exerting diverse pharmacological activities. In the present study, 26 novel O-alkylcoumarin derivatives were synthesized and have been tested at 100 µM for their in vitro inhibitory potential against acetylcholinesterase (AChE) and butyrlcholinesterase (BChE) targets which are the key enzymes playing role in the pathogenesis of Alzheimer’s disease. Among the tested coumarins, none of them could inhibit AChE, whereas 12 of them exerted a marked and selective inhibition against BChE as compared to the reference (galanthamine, IC50 = 46.58 ± 0.91 µM). In fact, 10 of the active coumarins showed higher inhibition (IC50 = 7.01 ± 0.28 µM – 43.31 ± 3.63 µM) than that of galanthamine. The most active ones were revealed to be 7-styryloxycoumarin (IC50 = 7.01 ± 0.28 µM) and 7-isopentenyloxy-4-methylcoumarin (IC50 = 8.18 ± 0.74 µM). In addition to the in vitro tests, MetaCore/MetaDrug binary QSAR models and docking simulations were applied to evaluate the active compounds by ligand-based and target-driven approaches. The predicted pharmacokinetic profiles of the compounds suggested that the compounds reveal lipophilic character and permeate blood brain barrier (BBB) and the ADME models predict higher human serum protein binding percentages (>50%) for the compounds. The calculated docking scores indicated that the coumarins showing remarkable BChE inhibition possessed favorable free binding energies in interacting with the ligand-binding domain of the target. Therefore, our results disclose that O-alkylcoumarins are promising selective inhibitors of cholinesterase enzymes, particularly BChE in our case, which definitely deserve further studies.  相似文献   

9.
Cholinergic hypothesis of Alzheimer’s disease has been advocated as an essential tool in the last couple of decades for the drug development. Here in, we report de novo fragment growing strategy for the design of novel 3,5-diarylpyrazoles and hit optimization of spiropyrazoline derivatives as acetyl cholinesterase inhibitors. Both type of scaffolds numbering forty compounds were synthesized and evaluated for their potencies against AChE, BuChE and PAMPA. Introduction of lipophilic cyclohexane ring in 3,5-diarylpyrazole analogs led to spiropyrazoline derivatives, which facilitated and improved the potencies. Compound 44 (AChE = 1.937 ± 0.066 µM; BuChE = 1.166 ± 0.088 µM; hAChE = 1.758 ± 0.095 µM; Pe = 9.491 ± 0.34 × 10−6 cm s1) showed positive results, which on further optimization led to the development of compound 67 (AChE = 0.464 ± 0.166 µM; BuChE = 0.754 ± 0.121 µM; hAChE = 0.472 ± 0.042 µM; Pe = 13.92 ± 0.022 × 10−6 cm s1). Compounds 44 and 67 produced significant displacement of propidium iodide from the peripheral anionic site (PAS) of AChE. They were found to be safer to MC65 cells and decreased metal induced Aβ1-42 aggregation. Further, in-vivo behavioral studies, on scopolamine induced amnesia model, the compounds resulted in better percentage spontaneous alternation scores and were safe, had no influence on locomotion in tested animal groups at dose of 3 mg/kg. Early pharmacokinetic assessment of optimized hit molecules was supportive for further drug development.  相似文献   

10.
α-Methylacyl-CoA racemase (AMACR; P504S) is a promising novel drug target for prostate and other cancers. Assaying enzyme activity is difficult due to the reversibility of the ‘racemisation’ reaction and the difficulties in the separation of epimeric products; consequently few inhibitors have been described and no structure–activity relationship study has been performed. This paper describes the first structure–activity relationship study, in which a series of 23 known and potential rational AMACR inhibitors were evaluated. AMACR was potently inhibited (IC50 = 400–750 nM) by ibuprofenoyl-CoA and derivatives. Potency was positively correlated with inhibitor lipophilicity. AMACR was also inhibited by straight-chain and branched-chain acyl-CoA esters, with potency positively correlating with inhibitor lipophilicity. 2-Methyldecanoyl-CoAs were ca. 3-fold more potent inhibitors than decanoyl-CoA, demonstrating the importance of the 2-methyl group for effective inhibition. Elimination substrates and compounds with modified acyl-CoA cores were also investigated, and shown to be potent inhibitors. These results are the first to demonstrate structure–activity relationships of rational AMACR inhibitors and that potency can be predicted by acyl-CoA lipophilicity. The study also demonstrates the utility of the colorimetric assay for thorough inhibitor characterisation.  相似文献   

11.
We report the design, synthesis and biological evaluation of 17 novel 8-aryl-2-morpholino-3,4-dihydroquinazoline derivatives based on the standard model of DNA-PK and PI3K inhibitors. Novel compounds are sub-divided into two series where the second series of five derivatives was designed to have a better solubility profile over the first one. A combination of in vitro and in silico techniques suggested a plausible synergistic effect with doxorubicin of the most potent compound 14d on cell proliferation via DNA-PK and poly(ADP-ribose) polymerase-1 (PARP-1) inhibition, while alone having a negligible effect on cell proliferation.  相似文献   

12.
Chalcones (1, 3-Diphenyl-2-propen-1-one) consist of a three carbon α, β-unsaturated carbonyl system and act as precursors for the biosynthesis of flavonoids in plants. However, laboratory synthesis of various chalcones has also been reported. Both natural and synthetic chalcones are known to exhibit a variety of pharmacological activities such as anti-inflammatory, antitumor, antibacterial, antifungal, antimalarial and antituberculosis. These promising activities, ease of synthesis and simple chemical structure have awarded chalcones considerable attraction. This review focuses on the anti-inflammatory effects of chalcones, caused by their inhibitory action primarily against the activities and expressions of four key inflammatory mediators viz., cyclooxygenase, prostaglandin E2, inducible NO synthase, and nuclear factor κB. Various methodologies for the synthesis of chalcones have been discussed. The potency of recently synthesized chalcones is given in terms of their IC50 values. Structure-Activity Relationships (SARs) of a variety of chalcone derivatives have been discussed. Computational methods were applied to calculate the ideal orientation of a typical chalcone scaffold against three enzymes, namely, cyclooxygenase-1, cyclooxygenase-2 and inducible NO synthase for the formation of stable complexes. The global market of anti-inflammatory drugs and its expected growth (from 2018 to 2026) have been discussed. SAR analysis, docking studies, and future prospects all together provide useful clues for the synthesis of novel chalcones of improved anti-inflammatory activities.  相似文献   

13.
《Journal of molecular biology》2019,431(24):4941-4958
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.  相似文献   

14.
The physiological and metabolic processes of host plants are manipulated and remodeled by phytopathogenic fungi during infection, revealed obvious signs of biotrophy of the hemibiotrophic pathogen. As we known that effector proteins play key roles in interaction of hemibiotrophic fungi and their host plants. BAS4 (biotrophy-associated secreted protein 4) is an EIHM (extrainvasive hyphal membrane) matrix protein that was highly expressed in infectious hyphae. In order to study whether BAS4 is involved in the transition of rice blast fungus from biotrophic to necrotrophic phase, The susceptible rice cultivar Lijiangxintuanheigu (LTH) that were pre-treated with prokaryotic expression product of BAS4 and then followed with inoculation of the blast strain, more serious blast disease symptom, more biomass such as sporulation and fungal relative growth, and lower expression level of pathogenicity-related genes appeared in lesion of the rice leaves than those of the PBS-pretreated-leaves followed with inoculation of the same blast strain, which demonstrating that BAS4 invitro changed rice defense system to facilitate infection of rice blast strain. And the susceptible rice cultivar (LTH) were inoculated withBAS4-overexpressed blast strain, we also found more serious blast disease symptom and more biomass also appeared in lesion of leaves inoculated with BAS4-overexpressed strain than those of leaves inoculated with the wild-type strain, and expression level of pathogenicity-related genes appeared lower in biotrophic phase and higher in necrotrophic phase of infection, indicating BAS4 maybe in vivo regulate defense system of rice to facilitate transition of biotrophic to necrotrophic phase. Our data demonstrates that BAS4 in vitro and in vivo participates in transition from the biotrophic to the necrotrophic phase of Magnaporthe oryzae.  相似文献   

15.
Protein tyrosine phosphatase 1B (PTP1B) has recently been identified as a potential target of Norathyriol. Unfortunately, Norathyriol is not a potent PTP1B inhibitor, which somewhat hinders its further application. Based on the fact that no study on the relationship of chemical structure and PTP1B inhibitory activity of Norathyriol has been reported so far, we attempted to perform structural optimization so as to improve the potency for PTP1B. Via structure-based drug design (SBDD), a rational strategy based on the binding mode of Norathyriol to PTP1B, we designed 26 derivatives with substitutions at the four phenolic hydroxyl groups of Norathyriol. By chemical synthesis and in vitro bioassay, we identified seven PTP1B inhibitors that were more potent than Norathyriol, of which XWJ24 showed the highest potency (IC50: 0.6 μM). We also found out that XWJ24 was a competitive inhibitor and showed the 4.5-fold selectivity over its close homolog, TC-PTP. Through molecular docking of XWJ24 against PTP1B, we highlighted the essential role of its hydrogen bond with Asp181 for PTP1B inhibition and identified a potential halogen bond with Asp48 that was not observed for Norathyriol. The current data indicate that our SBDD strategy is effective to discover potent PTP1B-targeted Norathyriol derivatives, and XWJ24 is a promising lead compound for further development.  相似文献   

16.
The delivery of drugs to the brain is complicated by the multiple factors including low blood–brain barrier (BBB) passive permeability, active BBB efflux systems, and plasma protein binding. Thus, a detailed understanding of the transport of the new potent substances through the membranes is vitally important and their physico-chemical characteristics should be analyzed at first. This work presents an evaluation of drug likeness of eight 7-O-arylpiperazinylcoumarin derivatives with high affinity towards serotoninergic receptors 5-HT1A and 5-HT2A with particular analysis of the requirements for the CNS chemotherapeutics. The binding constants to human serum albumin (HSA) were determined at physiological pH using fluorescence spectroscopy, and then their mode of action was explained by analysis of theoretical HSA complexes. Dynamic simulation of systems allowed for reliable evaluation of the interaction strength. The analyzed coumarins were able to pass BBB, and they present good drug likeness properties. They showed high affinities to HSA (log KQ = 5.3–6.0 which corresponds to −8.12 to −7.15 kcalmol−1 of Gibbs free energy). The changes of the emission intensity upon binding to HSA were scrutinized showing the different mode of action for 4-phenylpiperazinylcoumarins. The values of computed Gibbs free energy and determined on the basis of experimentally obtained binding constants log KQ coincide suggesting a good quality of the theoretical model. Overall the 8-acetyl-7-O-arylpiperazinyl-4-methylcoumarin derivatives represent valuable lead compounds to be further tested in various preclinical assays as a possible chemotherapeutics against CNS diseases. Studied coumarins can be metabolized by cytochrome P450 to aldehydes and hydroxy derivatives. The existence of other binding sites inside HSA than Sudlow’s site 1 was postulated. The longer aliphatic linker between coumarin and piperazine moieties favored binding to HSA in other than Sudlow site 1 pocket.  相似文献   

17.
The chemical transformation of phosphinic acid is a well-considered mature area of research on account of the historical significant reactions such as Kabachnik–Fields, Mannich, Arbuzov, Michaelis–Becker, etc. Considerable advances have been made over last years especially in metal-catalyzed, free-radical processes and asymmetric synthesis using catalytic enantioselective. As a result, the aim of this synopsis is to make the reader familiar with advances in the approaches of phosphinic acids toward the synthesis of highly functionalized and valuable buildings blocks. Another purpose of this survey is to provide the current status of the applications of phosphinic acids in the synthesis of drugs.  相似文献   

18.
Recent studies show that exposure to ultraviolet (UV) light suppresses ocular elongation, which causes myopia development. However, the specific mechanisms of this process have not been elucidated. A UV-sensor, Opsin 5 (Opn5) mRNA was shown to be present in extraretinal tissues. To test the possibility that UV-signals mediated by Opn5 would have a direct effect on the outer connective tissues of the eye, we first examined the expression patterns of a mammalian type Opn5 (Opn5m) in the late-embryonic chicken eye. Quantitative PCR showed Opn5m mRNA expression in the cornea and sclera. The anti-Opn5m antibody stained a small subset of cells in the corneal stroma and fibrous sclera. We next assessed the effect of UV-A (375 nm) irradiation on the chicken fibroblast cell line DF-1 overexpressing chicken Opn5m. UV-A irradiation for 30 min significantly increased the expression of Early growth response 1 (Egr1), known as an immediate early responsive gene, and of Matrix metalloproteinase 2 (Mmp2) in the presence of retinal chromophore 11-cis-retinal. In contrast, expression of Transforming growth factor beta 2 and Tissue inhibitor of metalloproteinase 2 was not significantly altered. These results indicate that UV-A absorption by Opn5m can upregulate the expression levels of Egr1 and Mmp2 in non-neuronal, fibroblasts. Taken together with the presence of Opn5m in the cornea and sclera, it is suggested that UV-A signaling mediated by Opn5 in the extraretinal ocular tissues could influence directly the outer connective tissues of the chicken late-embryonic eye.  相似文献   

19.
N-Methylpyrrolidone is a solvent molecule which has been shown to compete with acetyl-lysine-containing peptides for binding to bromodomains. From crystallographic studies, it has also been shown to closely mimic the acetamide binding motif in several bromodomains, but has not yet been directly pursued as a fragment in bromodomain inhibition. In this paper, we report the elaboration of N-methylpyrrolidone as a potential lead in fragment-based drug design. Firstly, N-methylpyrrolidone was functionalised to provide points for chemical elaboration. Then, the moiety was incorporated into analogues of the reported bromodomain inhibitor, Olinone. X-ray crystallography revealed that the modified analogues showed comparable binding affinity and structural mimicry to Olinone in the bromodomain binding site.  相似文献   

20.
Here a new series of twenty-one organoselenides, of potential protective activity, were synthesized and tested for their intrinsic cytotoxicity, anti-apoptotic and antioxidant capacities in oligodendrocytes. Most of the organoselenides were able to decrease the ROS levels, revealing antioxidant properties. Compounds 5b and 7b showed a high glutathione peroxidase (GPx)-like activities, which were 1.5 folds more active than ebselen. Remarkably, compound 5a diminished the formation of the oligodendrocytes SubG1 peak in a concentration-dependent manner, indicating its anti-apoptotic properties. Furthermore, based on the SwissADME web interface, we performed an in-silico structure-activity relationship to explore the drug-likeness of these organoselenides, predicting the pharmacokinetic parameters for compounds of interest that could cross the blood-brain barrier. Collectively, we present new organoselenide compounds with cytoprotective and antioxidant properties that can be considered as promising drug candidates for myelin diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号