首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Anaplastic thyroid cancer is considered to be one of the most aggressive human malignancies, and the mean survival time after diagnosis is approximately six months, regardless of treatments. This study aimed to examine how EpCAM and its related molecules are involved in the characteristics of anaplastic thyroid carcinoma.

Methodology/Principal Findings

Two differentiated thyroid cancer cell lines (TPC-1 and FTC-133), and two anaplastic thyroid cancer cell lines (FRO, ACT-1) were analyzed for expression of CD44 standard isoform (CD44s), CD44 variant isoforms, and EpCAM, and human aldehyde dehydrogenase-1 (ALDH1) enzymatic activity using flow cytometry. CD44s expression was higher in TPC-1 and FTC-133 than in the FRO and ACT-1, whereas ALDH1 activities were higher in FRO and ACT-1 than in TPC-1 and FTC-133. An inverse correlation between CD44s expression and ALDH1 activity was observed in all thyroid cancer cell lines. As for the expressions of CD44 variant isoforms, ACT-1 showed higher and FRO showed moderate CD44v6 expressions, whereas either TPC-1 or FTC-133 showed negative CD44v6 expression. EpCAM expressions in FRO and ACT-1 were higher than those in TPC-1 and FTC-133, and EpCAM expressions inversely correlated with those of CD44s. A positive correlation was observed between EpCAM expression and ALDH1 activity in thyroid cancer cell lines. In the RT-PCR analysis, the expression levels of EpCAM, caludin-7 and ALDH1 in FRO and ATC-1 cells were significantly higher than those in TPC-1 and FTC-133 cells. In clinical specimens of thyroid cancers, nuclear expression of EpCAM and high expression of CD44v6 were detected significantly more frequently in anaplastic carcinomas.

Conclusions/Significance

Our study suggests the possibility that EpCAM, together with CD44v6 and claudin-7 as well as ALDH1, may be involved in the development of the aggressive phenotype of anaplastic thyroid carcinoma. Our findings may suggest a novel therapeutic strategy for treatment of anaplastic thyroid carcinoma.  相似文献   

2.

Background

Bispecific T cell engager (BiTE®) are single-chain bispecific antibody constructs with dual specificity for CD3 on T cells and a surface antigen on target cells. They can elicit a polyclonal cytotoxic T cell response that is not restricted by T cell receptor (TCR) specificity, and surface expression of MHC class I/peptide antigen complexes. Using human EpCAM/CD3-bispecific BiTE® antibody construct AMG 110, we here assessed to what extent surface expression of PD-L1, cytoplasmic expression of indoleamine-2,3-deoxygenase type 1, Bcl-2 and serpin PI-9, and the presence of transforming growth factor beta (TGF-β), interleukin-10 (IL-10) and adenosine in culture medium can impact redirected lysis by AMG 110-engaged T cells.

Methods

The seven factors, which are all involved in inhibiting T cell functions by cancer cells, were tested with human EpCAM-expressing Chinese hamster ovary (CHO) target cells at levels that in most cases exceeded those observed in a number of human cancer cell lines. Co-culture experiments were used to determine the impact of the evasion mechanisms on EC50 values and amplitude of redirected lysis by AMG 110, and on BiTE®-induced proliferation of previously resting human peripheral T cells.

Findings

An inhibitory effect on redirected lysis by AMG 110-engaged T cells was seen upon overexpression of serpin PI-9, Bcl-2, TGF-βand PD-L1. An inhibitory effect on induction of T cell proliferation was only seen with CHO cells overexpressing IDO. In no case, a single evasion mechanism rendered target cells completely resistant to BiTE®-induced lysis, and even various combinations could not.

Conclusions

Our data suggest that diverse mechanisms employed by cancer cells to fend off T cells cannot inactivate AMG 110-engaged T cells, and that inhibitory effects observed in vitro may be overcome by increased concentrations of the BiTE® antibody construct.  相似文献   

3.

Background

Mechanical strain plays a great role in growth and differentiation of osteoblast. A previous study indicated that integrin-β (β1, β5) mediated osteoblast proliferation promoted by mechanical tensile strain. However, the involvement of integrin-β in osteoblastic differentiation and extracellular matrix (ECM) formation induced by mechanical tensile strain, remains unclear.

Results

After transfection with integrin-β1 siRNA or integrin-β5 siRNA, mouse MC3T3-E1 preosteoblasts were cultured in cell culture dishes and stimulated with mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz applied once a day for 1 h over 3 or 5 consecutive days. The cyclic tensile strain promoted osteoblastic differentiation of MC3T3-E1 cells. Transfection with integrin-β1 siRNA attenuated the osteoblastic diffenentiation induced by the tensile strain. By contrast, transfection with integrin-β5 siRNA had little effect on the osteoblastic differentiation induced by the strain. At the same time, the result of ECM formation promoted by the strain, was similar to the osteoblastic differentiation.

Conclusion

Integrin-β1 mediates osteoblast differentiation and osteoblastic ECM formation promoted by cyclic tensile strain, and integrin-β5 is not involved in the osteoblasts response to the tensile strain.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0014-y) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Low-dose rate brachytherapy is a well established treatment modality of oral cancer. Data about high-dose rate (HDR) brachytherapy are still sparse with various fractionation schedules and heterogeneous results.

Aim

The aim of our retrospective study was to evaluate the results of HDR brachytherapy with doses of 3 Gy twice daily.

Patients and methods

Twenty patients with squamous cell tongue cancer were treated in the years 2001–2009 by exclusive HDR BT 18 × 3 Gy twice daily. The plastic tube technique was used. Median follow up was 47 months (7.8–118) since brachytherapy.

Results

The local and locoregional control was 85% and 68%, respectively. Bone necrosis developed in one case treated without mandibular shielding and soft tissue necrosis in 2 cases.

Conclusion

It can be concluded that HDR brachytherapy with 18 × 3 Gy twice daily is safe with promising local control. The risk of nodal recurrences is substantial.  相似文献   

5.

Background

Our previous studies suggested that aberrant activation of Wnt/ß-catenin signaling might be involved in the pathophysiology of endometriosis. We hypothesized that inhibition of Wnt/ß-catenin signaling might result in inhibition of cell proliferation, migration, and/or invasion of endometrial and endometriotic epithelial and stromal cells of patients with endometriosis.

Objectives

The aim of the present study was to evaluate the effects of a small-molecule antagonist of the Tcf/ß-catenin complex (PKF 115–584) on cell proliferation, migration, and invasion of endometrial and endometriotic epithelial and stromal cells.

Methods

One hundred twenty-six patients (78 with and 48 without endometriosis) with normal menstrual cycles were recruited. In vitro effects of PKF 115–584 on cell proliferation, migration, and invasion and on the Tcf/ß-catenin target genes were evaluated in endometrial epithelial and stromal cells of patients with and without endometriosis, and in endometrial and endometriotic epithelial and stromal cells of the same patients.

Results

The inhibitory effects of PKF 115–584 on cell migration and invasion in endometrial epithelial and stromal cells of patients with endometriosis prepared from the menstrual phase were significantly higher than those of patients without endometriosis. Levels of total and active forms of MMP-9 were significantly higher in epithelial and stromal cells prepared from menstrual endometrium in patients with endometriosis compared to patients without endometriosis. Treatment with PKF 115–584 inhibited MMP-9 activity to undetectable levels in both menstrual endometrial epithelial and stromal cells of patients with endometriosis. The number of invasive cells was significantly higher in epithelial and stromal cells of endometriotic tissue compared with matched eutopic endometrium of the same patients. Treatment with PKF 115–584 decreased the number of invasive endometriotic epithelial cells by 73% and stromal cells by 75%.

Conclusions

The present findings demonstrated that cellular mechanisms known to be involved in endometriotic lesion development are inhibited by targeting the Wnt/β-catenin pathway.  相似文献   

6.
Meng L  Yang L  Zhao X  Zhang L  Zhu H  Liu C  Tan W 《PloS one》2012,7(4):e33434

Background

Using antibody/aptamer-drug conjugates can be a promising method for decreasing toxicity, while increasing the efficiency of chemotherapy.

Methodology/Principal Findings

In this study, the antitumor agent Doxorubicin (Dox) was incorporated into the modified DNA aptamer TLS11a-GC, which specifically targets LH86, a human hepatocellular carcinoma cell line. Cell viability tests demonstrated that the TLS11a-GC-Dox conjugates exhibited both potency and target specificity. Importantly, intercalating Dox into the modified aptamer inhibited nonspecific uptake of membrane-permeable Dox to the non-target cell line. Since the conjugates are selective for cells that express higher amounts of target proteins, both criteria noted above are met, making TLS11a-GC-Dox conjugates potential candidates for targeted delivery to liver cancer cells.

Conclusions/Significance

Considering the large number of available aptamers that have specific targets for a wide variety of cancer cells, this novel aptamer-drug intercalation method will have promising implications for chemotherapeutics in general.  相似文献   

7.

Background

Epithelial cell adhesion molecule (EpCAM)-based enumeration of circulating tumor cells (CTC) has prognostic value in patients with solid tumors, such as advanced breast, colon, and prostate cancer. However, poor sensitivity has been reported for non-small cell lung cancer (NSCLC). To address this problem, we developed a microcavity array (MCA) system integrated with a miniaturized device for CTC isolation without relying on EpCAM expression. Here, we report the results of a clinical study on CTCs of advanced lung cancer patients in which we compared the MCA system with the CellSearch system, which employs the conventional EpCAM-based method.

Methods

Paired peripheral blood samples were collected from 43 metastatic lung cancer patients to enumerate CTCs using the CellSearch system according to the manufacturer’s protocol and the MCA system by immunolabeling and cytomorphological analysis. The presence of CTCs was assessed blindly and independently by both systems.

Results

CTCs were detected in 17 of 22 NSCLC patients using the MCA system versus 7 of 22 patients using the CellSearch system. On the other hand, CTCs were detected in 20 of 21 small cell lung cancer (SCLC) patients using the MCA system versus 12 of 21 patients using the CellSearch system. Significantly more CTCs in NSCLC patients were detected by the MCA system (median 13, range 0–291 cells/7.5 mL) than by the CellSearch system (median 0, range 0–37 cells/7.5 ml) demonstrating statistical superiority (p = 0.0015). Statistical significance was not reached in SCLC though the trend favoring the MCA system over the CellSearch system was observed (p = 0.2888). The MCA system also isolated CTC clusters from patients who had been identified as CTC negative using the CellSearch system.

Conclusions

The MCA system has a potential to isolate significantly more CTCs and CTC clusters in advanced lung cancer patients compared to the CellSearch system.  相似文献   

8.

Introduction

We previously reported that sialyl Lewisy, synthesized by fucosyltransferases, is involved in angiogenesis. Fucosyltransferase 1 (fut1) is an α(1,2)-fucosyltransferase responsible for synthesis of the H blood group and Lewisy antigens. However, the angiogenic involvement of fut 1 in the pathogenesis of rheumatoid arthritis synovial tissue (RA ST) has not been clearly defined.

Methods

Assay of α(1,2)-linked fucosylated proteins in RA was performed by enzyme-linked lectin assay. Fut1 expression was determined in RA ST samples by immunohistological staining. We performed angiogenic Matrigel assays using a co-culture system of human dermal microvascular endothelial cells (HMVECs) and fut1 small interfering RNA (siRNA) transfected RA synovial fibroblasts. To determine if fut1 played a role in leukocyte retention and cell proliferation in the RA synovium, myeloid THP-1 cell adhesion assays and fut1 siRNA transfected RA synovial fibroblast proliferation assays were performed.

Results

Total α(1,2)-linked fucosylated proteins in RA ST were significantly higher compared to normal (NL) ST. Fut1 expression on RA ST lining cells positively correlated with ST inflammation. HMVECs from a co-culture system with fut1 siRNA transfected RA synovial fibroblasts exhibited decreased endothelial cell tube formation compared to control siRNA transfected RA synovial fibroblasts. Fut1 siRNA also inhibited myeloid THP-1 adhesion to RA synovial fibroblasts and RA synovial fibroblast proliferation.

Conclusions

These data show that α(1,2)-linked fucosylated proteins are upregulated in RA ST compared to NL ST. We also show that fut1 in RA synovial fibroblasts is important in angiogenesis, leukocyte-synovial fibroblast adhesion, and synovial fibroblast proliferation, all key processes in the pathogenesis of RA.  相似文献   

9.
10.

Background

Adherens junctions consist of transmembrane cadherins, which interact intracellularly with p120ctn, ß-catenin and α-catenin. p120ctn is known to regulate cell-cell adhesion by increasing cadherin stability, but the effects of other adherens junction components on cell-cell adhesion have not been compared with that of p120ctn.

Methodology/Principal Findings

We show that depletion of p120ctn by small interfering RNA (siRNA) in DU145 prostate cancer and MCF10A breast epithelial cells reduces the expression levels of the adherens junction proteins, E-cadherin, P-cadherin, ß-catenin and α-catenin, and induces loss of cell-cell adhesion. p120ctn-depleted cells also have increased migration speed and invasion, which correlates with increased Rap1 but not Rac1 or RhoA activity. Downregulation of P-cadherin, β-catenin and α-catenin but not E-cadherin induces a loss of cell-cell adhesion, increased migration and enhanced invasion similar to p120ctn depletion. However, only p120ctn depletion leads to a decrease in the levels of other adherens junction proteins.

Conclusions/Significance

Our data indicate that P-cadherin but not E-cadherin is important for maintaining adherens junctions in DU145 and MCF10A cells, and that depletion of any of the cadherin-associated proteins, p120ctn, ß-catenin or α-catenin, is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer cell invasion.  相似文献   

11.

Background

CD86-CD28 interaction has been suggested as the principal costimulatory pathway for the activation and differentiation of naïve T cells in allergic inflammation. However, it remains uncertain whether this pathway also has an essential role in the effector phase. We sought to determine the contribution of CD86 on dendritic cells in the reactivation of allergen-specific Th2 cells.

Methods

We investigated the effects of the downregulation of CD86 by short interfering RNAs (siRNAs) on Th2 cytokine production in the effector phase in vitro and on asthma phenotypes in ovalbumin (OVA)-sensitized and -challenged mice.

Results

Treatment of bone marrow-derived dendritic cells (BMDCs) with CD86 siRNA attenuated LPS-induced upregulation of CD86. CD86 siRNA treatment impaired BMDCs’ ability to activate OVA-specific Th2 cells. Intratracheal administration of CD86 siRNA during OVA challenge downregulated CD86 expression in the airway mucosa. CD86 siRNA treatment ameliorated OVA-induced airway eosinophilia, airway hyperresponsiveness, and the elevations of OVA-specific IgE in the sera and IL-5, IL-13, and CCL17 in the bronchoalveolar lavage fluid, but not the goblet cell hyperplasia.

Conclusion

These results suggest that local administration of CD86 siRNA during the effector phase ameliorates lines of asthma phenotypes. Targeting airway dendritic cells with siRNA suppresses airway inflammation and hyperresponsiveness in an experimental model of allergic asthma.  相似文献   

12.
13.

Background

This study evaluated the cytotoxic activity of extracts from Caesalpinia sappan heartwood against multiple cancer cell lines using an MTT cell viability assay. The cell death though induction of apoptosis was as indicated by DNA fragmentation and caspase-3 enzyme activation.

Results

A methanol extract from C. sappan (MECS) showed cytotoxic activity against several of the cancer cell lines. The most potent activity exhibited by the MECS was against HeLa cells with an IC50 value of 26.5 ± 3.2 μg/mL. Treatment of HeLa cells with various MECS concentrations resulted in growth inhibition and induction of apoptosis, as indicated by DNA fragmentation and caspase-3 enzyme activation.

Conclusion

This study is the first report of the anticancer properties of the heartwood of C. sappan native to Vietnam. Our findings demonstrate that C. sappan heartwood may have beneficial applications in the field of anticancer drug discovery.  相似文献   

14.

Background

Casticin is one of the main active components obtained from Fructus Viticis and has been reported to exert anti-carcinogenic activity on a variety of cancer cells but the precise mechanism underlying this activity remains unclear.

Materials and Methods

Apoptotic activities of casticin (1.0 µmol/l) and TRAIL (25, 50 ng/ml) alone or in combination in the gastric cancer cell lines BGC-823, SGC-7901 and MGC-803 were detected by the use of a cell apoptosis ELISA detection kit, flow cytometry (FCM) with propidium iodide (PI) staining and activities of caspase-3, -8 and -9 by ELISA and cleavage of polyADP-ribose polymerase (PARP) protein using western blot analysis. Death receptors (DR) expression levels were evaluated using FCM analysis and western blotting. 2′, 7′-dichlorofluorescein diacetate (DCFH-DA) was used as a probe to measure the increase in reactive oxygen species (ROS) levels in cells. Multiple interventions, such as siRNA transfection and pharmacological inhibitors were used to explore the mechanisms of these actions.

Results

Subtoxic concentrations of casticin significantly potentiated TRAIL-induced cytotoxicity and apoptosis in BGC-823, SGC-7901 and MGC-803 cells. Casticin dramatically upregulated DR5 receptor expression but had no effects on DR4 or decoy receptors. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by the co-application of TRAIL and casticin. Gene silencing of the CCAAT/enhancer binding protein homologous protein (CHOP) and pretreatment with salubrinal, an endoplasmic reticulum (ER) stress inhibitor, attenuated casticin-induced DR5 receptor expression, and apoptosis and ROS production. Casticin downregulated the expression levels of the cell survival proteins cFLIP, Bcl-2, XIAP, and survivin. In addition, casticin also induced the expressions of DR5 protein in other gastric cancer cells (SGC-7901 and MGC-803).

Conclusion/Significance

Casticin enhances TRAIL-induced apoptosis through the downregulation of cell survival proteins and the upregulation of DR5 receptors through actions on the ROS-ER stress-CHOP pathway.  相似文献   

15.

Objective

The objective of this study was to investigate nanobubbles carrying androgen receptor (AR) siRNA and their in vitro and in vivo anti-tumor effects, when combined with ultrasonic irradiation, on androgen-independent prostate cancer (AIPC).

Materials and Methods

Nanobubbles carrying AR siRNA were prepared using poly-L-lysine and electrostatic adsorption methods. Using C4-2 cell activity as a testing index, the optimal irradiation parameters (including the nanobubble number/cell number ratio, mechanical index [MI], and irradiation time) were determined and used for transfection of three human prostate cancer cell lines (C4-2, LNCaP, and PC-3 cells). The AR expression levels were investigated with RT-PCR and Western blot analysis. Additionally, the effects of the nanobubbles and control microbubbles named SonoVue were assessed via imaging in a C4-2 xenograft model. Finally, the growth and AR expression of seven groups of tumor tissues were assessed using the C4-2 xenograft mouse model.

Results

The nanobubbles had an average diameter of 609.5±15.6 nm and could effectively bind to AR siRNA. Under the optimized conditions of a nanobubble number/cell number ratio of 100∶1, an MI of 1.2, and an irradiation time of 2 min, the highest transfection rates in C4-2, LNCaP, and PC-3 cells were 67.4%, 74.0%, and 63.96%, respectively. In the C4-2 and LNCaP cells, treatment with these binding nanobubbles plus ultrasonic irradiation significantly inhibited cell growth and resulted in the suppression of AR mRNA and protein expression. Additionally, contrast-enhanced ultrasound showed that the nanobubbles achieved stronger signals than the SonoVue control in the central hypovascular area of the tumors. Finally, the anti-tumor effect of these nanobubbles plus ultrasonic irradiation was most significant in the xenograft tumor model compared with the other groups.

Conclusion

Nanobubbles carrying AR siRNA could be potentially used as gene vectors in combination with ultrasonic irradiation for the treatment of AIPC.  相似文献   

16.

Background

EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells.

Methodology/Principal Findings

To gain insights into EpCAM function in vivo, we generated EpCAM −/− mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to βgeo. EpCAM +/− mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/− embryos revealed that βgeo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM −/− mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM −/− embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM −/− placentas.

Conclusion

EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.  相似文献   

17.

Introduction

Epithelial cell adhesion molecule (EpCAM) is expressed in tumors with an epithelial cell of origin, in a heterogeneous manner. Prostate cancer stem-like cells highly express EpCAM. However, little is known about how EpCAM is involved in the ability of cells to adapt to micro-environmental changes in available growth factors, which is one of the essential biological phenotypes of cancer stem-like cells (CSCs).

Methods

EpCAM-high and EpCAM-low subpopulations of cells were established from the prostate cancer cell line PC-3. Signal transductions in response to serum starvation, and on the exposure to EGF ligand or the specific inhibitor were analyzed in terms. Furthermore, we analyzed the expression level of amino acid transporters which contribute to the activation of mTOR signal between the two subgroups.

Results

EpCAM-high and EpCAM-low PC-3 subpopulations showed markedly different responses to serum starvation. EpCAM expression was positively correlated with activation of the mTOR and epithelial growth factor receptor (EGFR) signaling pathways. Furthermore, AMP-activated protein kinase (AMPK) was gradually de-activated in EpCAM-low PC-3 cells in the absence of serum.

Conclusions

EpCAM regulates the AMPK signaling pathway, essential for the response to growth factors characterized by EGF. LAT1, the amino acid transporter stabilized at the cellular membrane by EpCAM, is likely to be responsible for the difference in the susceptibility to EGF between EpCAM-high and EpCAM-low PC-3 cells.  相似文献   

18.

Aim

This study evaluates the acute toxicity outcome in patients treated with RapidArc for localized prostate cancer.

Background

Modern technologies allow the delivery of high doses to the prostate while lowering the dose to the neighbouring organs at risk. Whether this dosimetric advantage translates into clinical benefit is not well known.

Materials and methods

Between December 2009 and May 2012, 45 patients with primary prostate adenocarcinoma were treated using RapidArc. All patients received 1.8 Gy per fraction, the median dose to the prostate gland, seminal vesicles, pelvic lymph nodes and surgical bed was 80 Gy (range, 77.4–81 Gy), 50.4 Gy, 50.4 Gy and 77.4 Gy (range, 75.6–79.2 Gy), respectively.

Results

The time between the last session and the last treatment follow up was a median of 10 months (range, 3–24 months). The incidence of grade 3 acute gastrointestinal (GI) and genitourinary (GU) toxicity was 2.2% and 15.5%, respectively. Grade 2 acute GI and GU toxicity occurred in 30% and 27% of patients, respectively. No grade 4 acute GI and GU toxicity were observed. Older patients (>median) or patients with V60 higher than 35% had significantly higher rates of grade ≥2 acute GI toxicity compared with the younger ones.

Conclusions

RapidArc in the treatment of localized prostate cancer is tolerated well with no Grade >3 GI and GU toxicities. Older patients or patients with higher V60 had significantly higher rates of grade ≥2 acute GI toxicity. Further research is necessary to assess definitive late toxicity and tumour control outcome.  相似文献   

19.

Purpose

The purpose of this study was to examine the effect of a 12-week walking exercise program on body composition and immune cell count in patients with breast cancer who are undergoing chemotherapy.

Methods

Twenty patients (age, 47.8 ± 3.12) participated in the study. Body composition (weight, body mass index, muscle weight, body fat mass, and percent body fat) and the cell counts for immune cells (white blood corpuscles, lymphocytes, helper T cells, cytotoxic T cells, natural killer cells, and natural killer T cells) were measured before and after the 12-week walking exercise program. SPSS 17.0 statistical software was used. The two-way repeated ANOVA with post hoc was used to determine the difference between time and interaction.

Results

There were significant reductions in the weight (p < .05), BMI (p < .01), and percent body fat (p < .05) after the 12-week walking exercise program. However, the immune cell counts did not change significantly.

Conclusion

These results indicated that the 12-week walking exercise program had an effect on the balances among weight, BMI and percent body fat in patients with breast cancer.  相似文献   

20.
β-arrestins, ubiquitous cellular scaffolding proteins that act as signaling mediators of numerous critical cellular pathways, are attractive therapeutic targets because they promote tumorigenesis in several tumor models. However, targeting scaffolding proteins with traditional small molecule drugs has been challenging. Inhibition of β-arrestin 2 with a novel aptamer impedes multiple oncogenic signaling pathways simultaneously. Additionally, delivery of the β-arrestin 2-targeting aptamer into leukemia cells through coupling to a recently described cancer cell-specific delivery aptamer, inhibits multiple β-arrestin-mediated signaling pathways known to be required for chronic myelogenous leukemia (CML) disease progression, and impairs tumorigenic growth in CML patient samples. The ability to target scaffolding proteins such as β-arrestin 2 with RNA aptamers may prove beneficial as a therapeutic strategy.

Highlights

  • An RNA aptamer inhibits β-arrestin 2 activity.
  • Inhibiting β-arrestin 2 impedes multiple tumorigenic pathways simultaneously.
  • The therapeutic aptamer is delivered to cancer cells using a cell-specific DNA aptamer.
  • Targeting β-arrestin 2 inhibits tumor progression in CML models and patient samples.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号