首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-binding and chromatin localization properties of CHD1.   总被引:8,自引:1,他引:7       下载免费PDF全文
CHD1 is a novel DNA-binding protein that contains both a chromatin organization modifier (chromo) domain and a helicase/ATPase domain. We show here that CHD1 preferentially binds to relatively long A.T tracts in double-stranded DNA via minor-groove interactions. Several CHD1-binding sites were found in a well-characterized nuclear-matrix attachment region, which is located adjacent to the intronic enhancer of the kappa immunoglobulin gene. The DNA-binding activity of CHD1 was localized to a 229-amino-acid segment in the C-terminal portion of the protein, which contains sequence motifs that have previously been implicated in the minor-groove binding of other proteins. We also demonstrate that CHD1 is a constituent of bulk chromatin and that it can be extracted from nuclei with 0.6 M NaCl or with 2 mM EDTA after mild digestion with micrococcal nuclease. In contrast to another chromo-domain protein, HP1, CHD1 is not preferentially located in condensed centromeric heterochromatin, even though centromeric DNA is highly enriched in (A+T)-rich tracts. Most interestingly, CHD1 is released into the cytoplasm when cells enter mitosis and is reincorporated into chromatin during telophase-cytokinesis. These observations lend credence to the idea that CHD1, like other proteins with chromo or helicase/ATPase domains, plays an important role in the determination of chromatin architecture.  相似文献   

2.
The Swi2/Snf2-related protein Rad54 is a chromatin remodeling enzyme that is important for homologous strand pairing catalyzed by the eukaryotic recombinase Rad51. The chromatin remodeling and DNA-stimulated ATPase activities of Rad54 are significantly enhanced by Rad51. To investigate the functions of Rad54, we generated and analyzed a series of mutant Rad54 proteins. Notably, the deletion of an N-terminal motif (amino acid residues 2-9), which is identical in Rad54 in Drosophila, mice, and humans, results in a complete loss of chromatin remodeling and strand pairing activities, and partial inhibition of the ATPase activity. In contrast, this conserved N-terminal motif has no apparent effect on the ability of DNA to stimulate the ATPase activity or of Rad51 to enhance the DNA-stimulated ATPase activity. Unexpectedly, as the N terminus of Rad54 is progressively truncated, the mutant proteins regain partial chromatin remodeling activity as well as essentially complete DNA-stimulated ATPase activity, both of which are no longer responsive to Rad51. These findings suggest that the N-terminal region of Rad54 contains an autoinhibitory activity that is relieved by Rad51.  相似文献   

3.
Chromodomain-Helicase DNA binding protein 7 (CHD7) is an ATP dependent chromatin remodeler involved in maintaining open chromatin structure. Mutations of CHD7 gene causes multiple developmental disorders, notably CHARGE syndrome. However, there is not much known about the molecular mechanism by which CHD7 remodels nucleosomes. Here, we performed biochemical and biophysical analysis on CHD7 chromatin remodeler and uncover that N-terminal to the Chromodomain (N-CRD) interacts with nucleosome and contains a high conserved arginine stretch, which is reminiscent of arginine anchor. Importantly, this region is required for efficient ATPase stimulation and nucleosome remodeling activity of CHD7. Furthermore, smFRET analysis shows the mutations in the N-CRD causes the defects in remodeling activity. Collectively, our results uncover the functional importance of a previously unidentified N-terminal region in CHD7 and implicate that the multiple domains in chromatin remodelers are involved in regulating their activities.  相似文献   

4.
5.
Although mutations or deletions of chromodomain helicase DNA-binding protein 5 (CHD5) have been linked to cancer and implicate CHD5 in tumor suppression, the ATP-dependent activity of CHD5 is currently unknown. In this study, we discovered that CHD5 is a chromatin remodeling factor with a unique enzymatic activity. CHD5 can expose nucleosomal DNA at one or two discrete positions in the nucleosome. The exposure of the nucleosomal DNA by CHD5 is dependent on ATP hydrolysis, but continued ATP hydrolysis is not required to maintain the nucleosomes in their remodeled state. The activity of CHD5 is distinct from other related chromatin remodeling ATPases, such as ACF and BRG1, and does not lead to complete disruption or destabilization of the nucleosome. Rather, CHD5 likely initiates remodeling in a manner similar to that of other remodeling factors but does not significantly reposition the nucleosome. While the related factor CHD4 shows strong ATPase activity, it does not unwrap nucleosomes as efficiently as CHD5. Our findings add to the growing evidence that chromatin remodeling ATPases have diverse roles in modulating chromatin structure.  相似文献   

6.
A major challenge in chromatin biology is to understand the mechanisms by which chromatin is remodeled into active or inactive states as required during development and cell differentiation. One complex implicated in these processes is the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains both histone deacetylase and nucleosome remodeling activities and has been implicated in the silencing of subsets of genes involved in various stages of cellular development. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core component of the NuRD complex and contains a nucleosome remodeling ATPase domain along with two chromodomains and two plant homeodomain (PHD) fingers. We have previously demonstrated that the second PHD finger of CHD4 binds peptides corresponding to the N terminus of histone H3 methylated at Lys(9). Here, we determine the solution structure of PHD2 in complex with H3K9me3, revealing the molecular basis of histone recognition, including a cation-π recognition mechanism for methylated Lys(9). Additionally, we demonstrate that the first PHD finger also exhibits binding to the N terminus of H3, and we establish the histone-binding surface of this domain. This is the first instance where histone binding ability has been demonstrated for two separate PHD modules within the one protein. These findings suggest that CHD4 could bind to two H3 N-terminal tails on the same nucleosome or on two separate nucleosomes simultaneously, presenting exciting implications for the mechanism by which CHD4 and the NuRD complex could direct chromatin remodeling.  相似文献   

7.
Chromatin-remodeling proteins have a pivotal role in normal cell function and development, catalyzing conformational changes in DNA that ultimately result in changes in gene expression patterns. Chromodomain helicase DNA-binding protein 4 (CHD4), the defining subunit of the nucleosome remodeling and deacetylase (NuRD) complex, is a nucleosome-remodeling protein of the SNF2/ISWI2 family, members of which contain two chromo domains and an ATP-dependent helicase module. CHD3, CHD4 and CHD5 also contain two contiguous PHD domains and have an extended N-terminal region that has not previously been characterized. We have identified a stable domain in the N-terminal region of CHD4 and report here the backbone and side chain resonance assignments for this domain at pH 7.5 and 25 °C (BMRB No. 18906).  相似文献   

8.
A plethora of ATP-dependent chromatin-remodeling enzymes have been identified during the last decade. Many have been shown to play pivotal roles in the organization and expression of eukaryotic genomes. It is clear that their activities need to be tightly regulated to ensure their coordinated action. However, little is known about how ATP-dependent remodelers are regulated at the molecular level. Here, we have investigated the ATP-dependent chromatin remodeling enzyme Mi-2 of Drosophila melanogaster. Radioactive labeling of S2 cells reveals that dMi-2 is a phosphoprotein in vivo. dMi-2 phosphorylation is constitutive, and we identify dCK2 as a major dMi-2 kinase in cell extracts. dCK2 binds to and phosphorylates a dMi-2 N-terminal region. Dephosphorylation of recombinant dMi-2 increases its affinity for the nucleosome substrate, nucleosome-stimulated ATPase, and ATP-dependent nucleosome mobilization activities. Our results reveal a potential mechanism for regulation of the dMi-2 enzyme and point toward CK2 phosphorylation as a common feature of CHD family ATPases.  相似文献   

9.
10.
Reverse gyrase is a peculiar DNA topoisomerase, specific of thermophilic microorganisms, which induces positive supercoiling into DNA molecules in an ATP-dependent reaction. It is a modular enzyme and comprises an N-terminal helicase-like module fused to a C-terminal topoisomerase IA-like domain. The exact molecular mechanism of this unique reaction is not understood, and a fundamental mechanistic question is how its distinct steps are coordinated. We studied the cross-talk between the components of this molecular motor and probed communication between the DNA-binding sites and the different activities (DNA relaxation, ATP hydrolysis and positive supercoiling). We show that the isolated ATPase and topoisomerase domains of reverse gyrase form specific physical interactions, retain their own DNA binding and enzymatic activities, and when combined cooperate to achieve the unique ATP-dependent positive supercoiling activity. Our results indicate a mutual effect of both domains on all individual steps of the reaction. The C-terminal domain shows ATP-independent topoisomerase activity, which is repressed by the N-terminal domain in the full-length enzyme; experiments with the isolated domains showed that the C-terminal domain has stimulatory influence on the ATPase activity of the N-terminal domain. In addition, the two domains showed a striking reciprocal thermostabilization effect.  相似文献   

11.
Havas K  Flaus A  Phelan M  Kingston R  Wade PA  Lilley DM  Owen-Hughes T 《Cell》2000,103(7):1133-1142
ATP-dependent chromatin remodeling activities participate in the alteration of chromatin structure during gene regulation. All have DNA- or chromatin-stimulated ATPase activity and many can alter the structure of chromatin; however, the means by which they do this have remained unclear. Here we describe a novel activity for ATP-dependent chromatin remodeling activities, the ability to generate unconstrained negative superhelical torsion in DNA and chromatin. We find that the ability to distort DNA is shared by the yeast SWI/SNF complex, Xenopus Mi-2 complex, recombinant ISWI, and recombinant BRG1, suggesting that the generation of superhelical torsion represents a primary biomechanical activity shared by all Snf2p-related ATPase motors. The generation of superhelical torque provides a potent means by which ATP-dependent chromatin remodeling activities can manipulate chromatin structure.  相似文献   

12.
13.
Chromodomain Helicase DNA-binding protein 4 (CHD4) is a chromatin-remodeling enzyme that has been reported to regulate DNA-damage responses through its N-terminal region in a poly(ADP-ribose) polymerase-dependent manner. We have identified and determined the structure of a stable domain (CHD4-N) in this N-terminal region. The-fold consists of a four-α-helix bundle with structural similarity to the high mobility group box, a domain that is well known as a DNA binding module. We show that the CHD4-N domain binds with higher affinity to poly(ADP-ribose) than to DNA. We also show that the N-terminal region of CHD4, although not CHD4-N alone, is essential for full nucleosome remodeling activity and is important for localizing CHD4 to sites of DNA damage. Overall, these data build on our understanding of how CHD4-NuRD acts to regulate gene expression and participates in the DNA-damage response.  相似文献   

14.
PICKLE plays a critical role in repression of genes that regulate development identity in Arabidopsis thaliana. PICKLE codes for a putative ATP-dependent chromatin remodeler that exhibits sequence similarity to members of subfamily II of animal CHD remodelers, which includes remodelers such as CHD3/Mi-2 that also restrict expression of developmental regulators. Whereas animal CHD3 remodelers are a component of the Mi-2/NuRD complex that promotes histone deacetylation, PICKLE promotes trimethylation of histone H3 lysine 27 suggesting that it acts via a distinct epigenetic pathway. Here, we examine whether PICKLE is also a member of a multisubunit complex and characterize the biochemical properties of recombinant PICKLE protein. Phylogenetic analysis indicates that PICKLE-related proteins in plants share a common ancestor with members of subfamily II of animal CHD remodelers. Biochemical characterization of PICKLE in planta, however, reveals that PICKLE primarily exists as a monomer. Recombinant PICKLE protein is an ATPase that is stimulated by ssDNA and mononucleosomes and binds to both naked DNA and mononucleosomes. Furthermore, recombinant PICKLE exhibits ATP-dependent chromatin remodeling activity. These studies demonstrate that subfamily II CHD proteins in plants, such as PICKLE, retain ATP-dependent chromatin remodeling activity but act through a mechanism that does not involve the ubiquitous Mi-2/NuRD complex.  相似文献   

15.
16.
染色质重塑是指染色质通过其结构的动态变化影响基因组DNA的可接近性,进而影响DNA复制、转录、修复和重组的过程,属于表观遗传调控。染色质域解旋酶DNA结合蛋白7(CHD7)是一种ATP依赖的染色质重塑酶,能够调控发育过程中多种重要转录因子,广泛参与众多生理过程。本文对CHD7在发育和疾病当中的表观遗传调控作用进行简要概述。  相似文献   

17.
18.
19.
Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号