首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The feasibility of using untreated rapeseed meal as a nitrogen source for iturin A production by Bacillus subtilis 3–10 in submerged fermentation was first evaluated by comparison with two different commercial nitrogen sources of peptone and ammonium nitrate. A significant promoting effect of rapeseed meal on iturin A production was observed and the maximum iturin A concentration of 0.60 g/L was reached at 70 h, which was 20% and 8.0 fold higher than that produced from peptone and ammonium nitrate media, respectively. It was shown that rapeseed meal had a positive induction effect on protease secretion, contributing to the release of soluble protein from low water solubility solid rapeseed meal for an effective supply of available nitrogen during fermentation. Moreover, compared to raw rapeseed meal, the remaining residue following fermentation could be used as a more suitable supplementary protein source for animal feed because of the great decrease of major anti-nutritional components including sinapine, glucosinolate and its degradation products of isothiocyanate and oxazolidine thione. The results obtained from this study demonstrate the potential of direct utilization of low cost rapeseed meal as a nitrogen source for commercial production of iturin A and other secondary metabolites by Bacillus subtilis.  相似文献   

2.
Ji L  Shen Y  Xu L  Peng B  Xiao Y  Bao X 《Bioresource technology》2011,102(17):8105-8109
Saccharomyces cerevisiae is affected by the presence of certain phenolic compounds such as vanillin during fermentation of pretreated lignocellulosic hydrolysates. Since vanillin can be polymerized in the presence of laccase into compounds with lower toxicity, the laccase gene, lacA, from Trametes sp. AH28-2 was fused to the α-factor signal sequence and transferred into S. cerevisiae CEN.PK strains for secretory expression. Furthermore, the chaperone gene, KAR2, was overexpressed to promote the translocation of laccase. In the presence of 8 mmol/L vanillin, a shorter lag phase was observed in the lacA gene expressing strains. The vanillin-specific conversion rate of the lacA-expressing strain BSJX0A2 was 0.069 g g−1 biomass h−1, while it was 0.065 g g−1 biomass h−1 in the reference strain.  相似文献   

3.
Synthetic decolorization of dyes through solid cassava residue substrate fermentation with Trametes sp. SYBC-L4 via in vivo and in vitro processes was investigated in this study. Effects of pH and mediator (1-hydroxybenzotriazole, HBT) concentration on dyes decolorization were evaluated. In vitro, decolorization ratios of dyes differed considerably in pH and increased with the increasing of HBT concentration. Crude laccase (50 U/L) derived from Trametes sp. SYBC-L4 decolorized 67.91 ± 1.25 % Congo red (100 mg/L), 94.58 ± 1.05 % aniline blue (100 mg/L) and 99.02 ± 0.54 % indigo carmine (100 mg/L) with 2.5 mM HBT at pH 4.5 in 36 h of incubation. In vivo, decolorization ratios of dyes were not enhanced by usage of the mediator. After 10 days of fermentation, decolorization ratio of Congo red (1,000 mg/kg), aniline blue (1,000 mg/kg) and indigo carmine (1,000 mg/kg) was 57.82 ± 0.84, 92.53 ± 1.12 and 97.26 ± 1.92 % without the usage of mediator at pH 4.5, respectively. Moreover, there was no obvious difference between the in vivo decolorization of aniline blue and indigo carmine in the pH range of 3.0–9.0. Results showed that Trametes sp. SYBC-L4 had great potential to be used for dyes decolorization via in vivo and in vitro processes. Moreover, in terms of pH range and mediator, in vivo decolorization with Trametes sp. SYBC-L4 was more advantageous since laccase mediator was needless and the applicable range of pH was broader.  相似文献   

4.
Laccase belongs to a family of multi-copper oxidases which is especially useful for biotechnological and industrial applications. A laccase-producing white-rot fungi strain designated as Trametes sp. 5930 was nearly isolated from Shennongjia Nature Reserve in China. Trametes sp. 5930 had the high yield of laccase and was capable of decolorizing different dyes efficiently. Laccase played a very important role in the decolorization of different dyes by this fungus. The laccase gene lac5930-1 and its corresponding full-length cDNA were then cloned and characterized from Trametes sp. 5930. The 1563 bp full-length cDNA of lac5930-1 encoded a mature laccase protein consisting of 499 amino acids preceded by a signal peptide of 21 amino acids. lac5930-1 gene was successfully expressed in Pichia pastoris, which verified the function of lac5930-1 encoding active laccase by means of gene expression. The recombinant laccase produced by the yeast transformant in which lac5930-1 was efficiently expressed, conferred the ability to decolorize different dyes. The capability of decolorizing different dyes was positively related to the laccase activity, which provided strong evidence for the important function of laccase used in decolorizing industrial dyes.  相似文献   

5.
In this work, a laccase producer, Ganoderma lucidum, was separated and identified according to its morphological characteristics and phylogenetic data. A 4000 U/l and 8500 U/l of laccase activity was obtained in 500 ml flask by submerged culture and biomembrane-surface liquid culture (BSLC), respectively. Furthermore, the novel biomembrane-surface liquid co-culture (BSLCc) was developed by adding Saccharomyces cerevisiae to reactor in order to shorten the fermentation period and improve laccase production. Laccase activity obtained by BSLCc, 23 000 U/l, is 5.8 and 2.7 times of that obtained by submerged culture and BSLC, respectively. In addition, laccase production by BSLCc was successfully scaled-up to 100 l reactor, and 38 000 U/l of laccase activity was obtained on day 8. The mechanism of overproducing laccase by BSLCc was investigated by metabolism pathway analysis of glucose. The results show glucose limitation in fermentation broth induces the secretion of laccase. The addition of S. cerevisiae, on one hand, leads to an earlier occurrence of glucose limitation state, and thus shortens the fermentation time; on the other hand, it also results in the appearance of a series of metabolites of the yeast including organic acids, ethanol, glycerol and so forth in fermentation broth, and both polyacrylamide gel electrophoresis analysis and enzyme activity detection of laccase show that these metabolites contribute to the improvement of laccase activity.  相似文献   

6.
Lantana camara, an abundantly available non-edible lignocellulosic biomass has been found to be a potential feedstock for ethanol production. The substrate was first pretreated with laccase followed by simultaneous saccharification and fermentation using cellulase and Saccharomyces cerevisiae, respectively. Laccase was produced from Pleurotus sp. and carbohydratases (cellulase and xylanase) were produced from Trichoderma reesei Rut C30. Using pretreated substrate simultaneous saccharification and fermentation was optimized through central composite design-based response surface methodology. Maximum bioethanol concentration of 5.14 % (v/v) was obtained at optimum process conditions of substrate concentration 17 % (w/v), inoculum volume 9 % (v/v), inoculum age 60 and 144 h of incubation time. To enhance ethanol yield, S. cerevisiae was treated with ethyl methane sulfonate, a chemical mutagenic agent which induced mutagenesis. A maximum bioethanol concentration of 6.01 % (v/v) was obtained using the mutated strain of S. cerevisiae (CM5).  相似文献   

7.
【目的】为提高漆酶产量,降低生产成本,以山核桃蒲壳作为基质,对粗毛栓菌D2固态发酵产漆酶的营养条件进行研究。【方法】对不同碳源、氮源、碳氮比、蒲壳含量对漆酶产量的影响进行分析。【结果】山核桃蒲壳是粗毛栓菌生长的良好载体,能够促进漆酶的合成。粗毛栓菌D2漆酶固态发酵培养基干物质组成为:山核桃蒲壳40%(质量比),玉米粉24%(质量比),菜籽饼粉36%(质量比)。发酵6 d时,漆酶活性为126.8 U/g干基。【结论】粗毛栓菌固态发酵山核桃蒲壳产漆酶具有效率高,生产成本低的优点,具有潜在的工业化应用前景。  相似文献   

8.
To improve production of fuel ethanol from renewable raw materials, laccase from the white rot fungus Trametes versicolor was expressed under control of the PGK1 promoter in Saccharomyces cerevisiae to increase its resistance to phenolic inhibitors in lignocellulose hydrolysates. It was found that the laccase activity could be enhanced twofold by simultaneous overexpression of the homologous t-SNARE Sso2p. The factors affecting the level of active laccase obtained, besides the cultivation temperature, included pH and aeration. Laccase-expressing and Sso2p-overexpressing S. cerevisiae was cultivated in the presence of coniferyl aldehyde to examine resistance to lignocellulose-derived phenolic fermentation inhibitors. The laccase-producing transformant had the ability to convert coniferyl aldehyde at a faster rate than a control transformant not expressing laccase, which enabled faster growth and ethanol formation. The laccase-producing transformant was also able to ferment a dilute acid spruce hydrolysate at a faster rate than the control transformant. A decrease in the content of low-molecular-mass aromatic compounds, accompanied by an increase in the content of high-molecular-mass compounds, was observed during fermentation with the laccase-expressing strain, illustrating that laccase was active even at the very low levels of oxygen supplied. Our results demonstrate the importance of phenolic compounds as fermentation inhibitors and the advantage of using laccase-expressing yeast strains for producing ethanol from lignocellulose.  相似文献   

9.
Aspergillus sp. NR-4201 was assessed by degrading glucosinolates in brownmustard seed meal (Brassica juncea). A liquid culture of the strain, in a medium derived from the meal, produced total degradation of glucosinolates at 32 h. Under these conditions, the glucosinolate-breakdown product, allylcyanide, was formed inculture filtrates. In a plate culture under sterile conditions, the growth of the strain inheat-treated meal media was shown to be effective at 30 °C with 51% moisture,as determined by the measurement of the colony growth rate. On the laboratory scale,solid-state culture under the same conditions gave rise to total glucosinolate degradationwithin 48 h. In comparison, under non-sterile conditions in either heat-treated or nonheat-treated meal samples, the degradations were complete after 60 and 96 h, respectively.In these cases, growth was associated with some out-growths of contaminating fungi,mainly Rhizopus sp. and Mucor sp. The glucosinolate-breakdown product,allylcyanide, was not detected in the solid-state meal-media culture presumably due toevaporative loss from the fermentation matrix.  相似文献   

10.
The production of ethanol from carob pods by Saccharomyces cerevisiae in solid-state fermentation was investigated. The maximal ethanol concentration (160±3 g/kg dry pods), ethanol productivity (6.7 ± 0.2 g/kg per hour), ethanol yield (40 ± 1.8%), biomass concentration (7.5 ± 0.4 x 108 cells/g carob pulp) and fermentation efficiency (80 ± 2%) were obtained at an inoculum amount of 3%, a particle size of 0.5 mm, a moisture level of 70%, a pH of 4.5 and a temperature of 30°C. Under the same fermentation conditions both sterilized and non-sterilized carob pods pulp gave the same maximum ethanol concentration.  相似文献   

11.
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g−1, which compares with 0.240 g g−1 (W5) and 0.353 g g−1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively.  相似文献   

12.
Oxidative enzymes possess catalytic activity in systems with ionic liquids   总被引:4,自引:2,他引:2  
Oxidative enzymes, laccase C from Trametes sp. and horseradish and soybean peroxidases, catalyzed oxidation reactions in systems with ionic liquids whose content varied from several volume percent to almost total non-aqueous ionic liquids. Similar to the effects produced by standard organic solvents used in non-aqueous enzymology, catalytic activity of the enzymes was decreased by adding a water-miscible ionic liquid, 4-methyl-N-butylpyridinium tetrafluoroborate, or by suspending the enzyme in a water-immiscible ionic liquid, 1-butyl-3-methylimdizaolium hexafluorophosphate. For the oxidation of anthracene, catalyzed by laccase C and assisted by a number of mediators, addition of 4-methyl-N-butylpyridinium tetrafluoroborate, instead of tert-butanol, increased the yield of the oxidation product several-fold.  相似文献   

13.
Reactive dyes are one of the major sources of waste-water pollution. Efficient degradation of these dyes with enzymes produced from agricultural waste has attracted tremendous recent interests in both the scientific community and the general public. In this study, we took advantage of solid-state fermentation of four agro-byproducts (rape stem, wheat bran, peanut shell and rice hull) for producing laccase from the fungus Trametes sp. AH28-2. Higher laccase activities were obtained in multiple-substrates media than in single substrate media. The maximum yield of laccase (2.10 × 106 U/kg) was obtained in the medium containing 60% rape stem, 20% peanut shell and 20% wheat bran, without the supplement of any toxic inducers. Our results further demonstrated that the textile reactive dyes Levafix Blue CA and Cibacron Blue FN-R (1.0 g/l) were completely decolorized by the crude laccase (5.0 U/l) obtained within 15 h in the absence of any mediator. Therefore, the agro-byproducts could be re-utilized to produce laccase for the decolorization of textile reactive dyes. Q.Y. Sun and Y.Z. Hong contributed equally to the study.  相似文献   

14.
A pilot-scale solid-ethanol fermentation system was experimented on, using corn grits. The ethanol produced was simultaneously stripped in the fermentor by circulating CO2 gas. Using a moderately thermophilic yeast (Saccharomyces cerevisiae 1031R) at a fermentation temeperature of 40°C, the stripping efficiency was improved and running time shortened. In this case, 467 g-ethanol/kg-initial dry mass was produced during 15 d of running. Fermentation efficiency was 87%, which is twice as much as conventional solid-state ethanol fermentation. The total recovery of ethanol produced was 96%, and the average ethanol concentration in the condensate was 223 g/l.  相似文献   

15.
The corncob is an important biomass for bioalcohol production. However, there is a minor but complicated pretreatment process before it is used for bioalcohol fermentation. In this study, three genetically modified Saccharomyces cerevisiae Y33 strains containing endoglucanase (EG), cellobiohydrolase (CBH), and β-glucosidase (BG) genes were constructed. A one-step fermentation process was carried out with the recombinants using corncob as the sole carbon source. In a 3-L fermentation system, the concentration of alcohol reached 2.02 g/L and the concentration of glycerine reached 0.85 g/L after 96 h. The results prove that corncob powder can be utilized effectively by genetically modified Saccharomyces cerevisiae without any chemical pretreatment. The mixed recombinant Saccharomyces cerevisiae cells show effective synergism in the one-step fermentation system. It is feasible that corncob can be used as the sole carbon source in bioalcohol production with a one-step fermentation process.  相似文献   

16.
On the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae, a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would reduce glycerol production during ethanol fermentation. Experimental validation of the simulation results was done by monitoring the inlet substrate feeding during fed-batch S. cerevisiae cultivation in order to maintain the respiratory quotient (RQ) (defined as the CO2 production to O2 consumption ratio) value between 4 and 5. Compared to previous fermentations without glucose monitoring, the final glycerol concentration was successfully decreased. Although RQ-controlled fermentation led to a lower maximum specific ethanol production rate, it was possible to reach a high level of ethanol production: 85 g · liter−1 with 1.7 g · liter−1 glycerol in 30 h. We showed here that by using a metabolic model as a tool in prediction, it was possible to reduce glycerol production in a very high-performance ethanolic fermentation process.  相似文献   

17.
Four traditional type I sourdoughs were comparatively propagated (28 days) under firm (dough yield, 160) and liquid (dough yield, 280) conditions to mimic the alternative technology options frequently used for making baked goods. After 28 days of propagation, liquid sourdoughs had the lowest pH and total titratable acidity (TTA), the lowest concentrations of lactic and acetic acids and free amino acids, and the most stable density of presumptive lactic acid bacteria. The cell density of yeasts was the highest in liquid sourdoughs. Liquid sourdoughs showed simplified microbial diversity and harbored a low number of strains, which were persistent. Lactobacillus plantarum dominated firm sourdoughs over time. Leuconostoc lactis and Lactobacillus brevis dominated only some firm sourdoughs, and Lactobacillus sanfranciscensis persisted for some time only in some firm sourdoughs. Leuconostoc citreum persisted in all firm and liquid sourdoughs, and it was the only species detected in liquid sourdoughs at all times; it was flanked by Leuconostoc mesenteroides in some sourdoughs. Saccharomyces cerevisiae, Candida humilis, Saccharomyces servazzii, Saccharomyces bayanus-Kazachstania sp., and Torulaspora delbrueckii were variously identified in firm and liquid sourdoughs. A total of 197 volatile components were identified through purge and trap–/solid-phase microextraction–gas chromatography-mass spectrometry (PT–/SPME–GC-MS). Aldehydes, several alcohols, and some esters were at the highest levels in liquid sourdoughs. Firm sourdoughs mainly contained ethyl acetate, acetic acid, some sulfur compounds, and terpenes. The use of liquid fermentation would change the main microbial and biochemical features of traditional baked goods, which have been manufactured under firm conditions for a long time.  相似文献   

18.
The inhibition of growth by octanoic or decanoic acids, two subproducts of ethanolic fermentation, was evaluated in Saccharomyces cerevisiae and Kluyveromyces marxianus in association with ethanol, the main product of fermentation. In both strains, octanoic and decanoic acids, at concentrations up to 16 and 8 mg/liter, respectively, decreased the maximum specific growth rate and the biomass yield at 30°C as an exponential function of the fatty acid concentration and increased the duration of growth latency. These toxic effects increased with a decrease in pH in the range of 5.4 to 3.0, indicating that the undissociated form is the toxic molecule. Decanoic acid was more toxic than octanoic acid. The concentrations of octanoic and decanoic acids were determined during the ethanolic fermentation (30°C) of two laboratory media (mineral and complex) by S. cerevisiae and of Jerusalem artichoke juice by K. marxianus. Based on the concentrations detected (0.7 to 23 mg/liter) and the kinetics of growth inhibition, the presence of octanoic and decanoic acids cannot be ignored in the evaluation of the overall inhibition of ethanolic fermentation.  相似文献   

19.
Several fungal species were isolated from different sources: post-harvest sugarcane residue, soil, decomposing forest litter and from mycelia obtained from the inner parts of fresh fungal fruiting bodies collected in Las Yungas region (Argentina). These isolates were first screened for their ability to produce carboxymethyl cellulose (CMC) degradation and guaiacol oxidation. After primary screening, seventeen isolates were further tested for their ligninolytic ability by assessing polyphenoloxidase, laccase, manganese peroxidase and endoxylanase activities. Based on their lignocellulolytic activities, five isolates (named Bjerkandera sp. Y-HHM2, Phanerochaete sp. Y-RN1, Pleurotus sp. Y-RN3, Hypocrea nigricans SCT-4.4 and Myrothecium sp. S-3.20) were selected for liquid and solid-state fermentation assays in culture media including sugarcane debris. Lignocellulolytic enzymes production, dry mass loss and phenol concentration in the water soluble fraction were then evaluated. Results suggest that native strains with lignocellulolytic activity are suitable to increase post-harvest sugarcane residue decomposition and support the use of these strains as an alternative to pre and post-harvest burning. Biological treatments using Phanerochaete sp. Y-RN1, Pleurotus sp. Y-RN3 and Myrothecium sp. S-3.20 could be used to degrade and increase the accessibility to lignocellulose components of sugarcane residue.  相似文献   

20.
This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号