首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. Knock down of both enzymes leads to cell cycle arrest and is lethal to the parasite. Recently, we reported the phenylpyridazinone, NPD-001, with low nanomolar IC50 values on both TbrPDEB1 (IC50: 4 nM) and TbrPDEB2 (IC50: 3 nM) (J. Infect. Dis. 2012, 206, 229). In this study, we now report on the first structure activity relationships of a series of phenylpyridazinone analogs as TbrPDEB1 inhibitors. A selection of compounds was also shown to be anti-parasitic. Importantly, a good correlation between TbrPDEB1 IC50 and EC50 against the whole parasite was observed. Preliminary analysis of the SAR of selected compounds on TbrPDEB1 and human PDEs shows large differences which shows the potential for obtaining parasite selective PDE inhibitors. The results of these studies support the pharmacological validation of the Trypanosome PDEB family as novel therapeutic approach for HAT and provide as well valuable information for the design of potent TbrPDEB1 inhibitors that could be used for the treatment of this disease.  相似文献   

2.
The biological role of GPI anchors is of paramount importance; however, we are still far from fully understanding the structure-function relationship of these molecules. One major limiting factor has been the tiny quantities available from natural sources; obtaining homogeneous and well-defined GPI structures by synthesis, is both a challenge and an attractive goal. We report here the convergent synthesis of the essential core of the human GPI anchor 1, exploiting a common precursor to obtain the trisaccharidic donor 2 and a novel protecting groups sequence. The final product, prepared for the first time, is biologically active.  相似文献   

3.
In a continuing study of our clinical candidate 5 VN/124-1 (TOK-001) and analogs as potential agents for prostate cancer therapy, putative metabolites (10, 15 and 18) of compound 5 were rationally designed and synthesized. However, none of these agents were as efficacious as 5 in several in vitro studies. Using western blot analysis, we have generated a preliminary structure–activity relationship (SAR) of 5 and related analogs as androgen receptor ablative agents (ARAAs). In vivo using the androgen-dependent LAPC-4 prostate cancer xenograft model, we demonstrated for the first time that 5 is more efficacious than the 17-lyase inhibitor 3 (abiraterone)/4 (abiraterone acetate) that is currently in phase III clinical trials. In our desire to optimize the potency of 5, compounds 6 (3ξ-fluoro-) and 9 (3β-sulfamate-) designed to increase the stability and oral bioavailability of 5, respectively were evaluated in vivo. We showed, that on equimolar basis, compound 6 was ∼2-fold more efficacious versus LAPC-4 xenografts than 5, but the toxicity observed with 6 is of concern. These studies further demonstrate the efficacy of 5 in a clinically relevant prostate cancer model and justify its current clinical development as a potential treatment of prostate cancer.  相似文献   

4.
An Acinetobacter strain, given the code name LCH001 and having the potential to be an endophytic antagonist, has been isolated from healthy stems of the plant Cinnamomum camphora (L.) Presl, guided by an in vitro screening technique. The bacterium inhibited the growth of several phytopathogenic fungi such as Cryphonectria parasitica, Glomerella glycines, Phytophthora capsici, Fusarium graminearum, Botrytis cinerea, and Rhizoctonia solani. Biochemical, physiological, and 16S rDNA sequence analysis proved that it is Acinetobacter baumannii. When the filtrate from the fermentation broth of strain LCH001 was tested in vitro and in vivo, it showed strong growth inhibition against several phytopathogens including P. capsici, F. graminearum, and R. solani, indicating that suppression of the growth of the fungi was due to the presence of antifungal compounds in the culture broth. Moreover, the antifungal activity of the culture filtrate was significantly correlated with the cell growth of strain LCH001. The active metabolites in the filtrate were relatively thermally stable, but were sensitive to acidic conditions. Three antifungal compounds were isolated from the culture broth by absorption onto macropore resin, ethanol extraction, chromatography on silica gel or LH-20 columns, and crystallization. The structures of the bioactive compounds were identified by spectroscopic methods as isomers of iturin A, namely, iturin A2, iturin A3, and iturin A6. The characterization of an unusual endophytic bacterial strain LCH001 and its bioactive components may provide an alternative resource for the biocontrol of plant diseases.  相似文献   

5.
A series of new thiophene-based guanylhydrazones (iminoguanidines) were synthesized in high yields using a straightforward two-step procedure. The antifungal activity of compounds was evaluated against a wide range of medicaly important fungal strains including yeasts, molds, and dermatophytes in comparison to clinically used drug voriconazole. Cytotoxic properties of compounds were also determined using human lung fibroblast cell line and hemolysis assay. All guanylhydrazones showed significant activity against broad spectrum of clinically important species of Candida spp., Aspergillus fumigatus, Fusarium oxysporum, Microsporum canis and Trichophyton mentagrophytes, which was in some cases comparable or better than activity of voriconazole. More importantly, compounds 10, 11, 13, 14, 18 and 21 exhibited excellent activity against voriconazole-resistant Candida albicans CA5 with very low minimal inhibitory concentration (MIC) values <2 μg mL−1. Derivative 14, bearing bromine on the phenyl ring, was the most effective compound with MICs ranging from 0.25 to 6.25 μg mL−1. However, bis-guanylhydrazone 18 showed better selectivity in terms of therapeutic index values. In vivo embryotoxicity on zebrafish (Danio rerio) showed improved toxicity profile of 11, 14 and 18 in comparison to that of voriconazole. Most guanylhydrazones also inhibited C. albicans yeast to hyphal transition, essential for its biofilm formation, while 11 and 18 were able to disperse preformed Candida biofilms. All guanylhydrazones showed the equal potential to interact with genomic DNA of C. albicans in vitro, thus indicating a possible mechanism of their action, as well as possible mechanism of observed cytotoxic effects. Tested compounds did not have significant hemolytic effect and caused low liposome leakage, which excluded the cell membrane as a primary target. On the basis of computational docking experiments using both human and cytochrome P450 from Candida it was concluded that the most active guanylhydrazones had minimal structural prerequisites to interact with the cytochrome P450 14α-demethylase (CYP51). Promising guanylhydrazone derivatives also showed satisfactory pharmacokinetic profile based on molecular calculations.  相似文献   

6.
Parasitic diseases, such as African sleeping sickness, have a significant impact on the health and well-being in the poorest regions of the world. Pragmatic drug discovery efforts are needed to find new therapeutic agents. In this Letter we describe target repurposing efforts focused on trypanosomal phosphodiesterases. We outline the synthesis and biological evaluation of analogs of sildenafil (1), a human PDE5 inhibitor, for activities against trypanosomal PDEB1 (TbrPDEB1). We find that, while low potency analogs can be prepared, this chemical class is a sub-optimal starting point for further development of TbrPDE inhibitors.  相似文献   

7.
8.
Distant homology relationships among proteins with many transmembrane regions (TMs) are difficult to detect as they are clouded by the TMs’ hydrophobic compositional bias and mutational divergence in connecting loops. In the case of several GPI lipid anchor biosynthesis pathway components, the hidden evolutionary signal can be revealed with dissectHMMER, a sequence similarity search tool focusing on fold-critical, high complexity sequence segments. We find that a sequence module with 10 TMs in PIG-W, described as acyl transferase, is homologous to PIG-U, a transamidase subunit without characterized molecular function, and to mannosyltransferases PIG-B, PIG-M, PIG-V and PIG-Z. We conclude that this new, membrane-embedded domain named BindGPILA functions as the unit for recognizing, binding and stabilizing the GPI lipid anchor in a modification-competent form as this appears the only functional aspect shared among all proteins. Thus, PIG-U's likely molecular function is shuttling/presenting the anchor in a productive conformation to the transamidase complex.  相似文献   

9.
Vibsanin A is an 11-membered vibsane diterpenoid and is reported to induce myeloid cell differentiation via activation of protein kinase C (PKC) without tumor-promoting activity. Therefore, vibsanin A is thought to be an attractive compound for acute myeloid leukemia (AML) therapy. In this study, we synthesized vibsanin A analogs and compared the activity of these compounds for PKC activation and myeloid cell differentiation. We found that the hydroxymethyl group in vibsanin A is an important substituent to induce differentiation of AML cells. Collectively, our results showed the biochemical features of vibsanin A and provided new insights into the development of new antileukemic drugs.  相似文献   

10.
In this work, 90 dichloromethane and methanol extracts obtained from 45 plants collected at the Natural Reserve Bremen – La Popa (Colombia) and at the Natural Regional Park Ucumarí (NRPU, Colombia) belonging to five botanical families were evaluated at 1000 mg/l, for their in vitro fungicide activity through the ascospore germ tube elongation and the measurement of the mycelial radial growth of Mycosphaerella fijiensis assays. The methanol extracts from the species Lycianthes acutifolia (Solanaceae) and Piper pesaresanum (Piperaceae); as well as, the dichloromethane extracts from P. pesaresanum and those from the Lauraceae family named Nectandra acutifolia and Ocoteca paulii, all inhibited M. fijiensis ascospore germination in 100% in the germinative tube elongation assay. With regards to the effects of the plant extracts on mycelial radial growth, the methanol extracts from P. pesaresanum and the dichloromethane one from N. acutifolia both showed 100% inhibition in this bioassay. Additionally, from the phytochemical screening on the dichloromethane and methanol extracts it was found that compounds such as alkaloids, phenols and terpenes were present in most of the extracts evaluated and they might be the cause of the antifungal activities reported.  相似文献   

11.
New pyridazino[4,5-b]indol-4-ones and pyridazin-3(2H)-one analogs were synthesized and their inhibitory activities against DYRK1A, CDK5/p25, GSK3α/β and p110-α isoform of PI3K evaluated using harmine as reference. Both furan-2-yl 10 and pyridin-4-yl 19 from the two different series, exhibited submicromolar IC50 against DYRK1A with no activities against the three other kinases. In addition, compound 10 exhibited antiproliferative activities in the Huh-7, Caco2 and MDA-MB-231 cell lines.  相似文献   

12.
A known side-activity of the oral potassium-sparing diuretic drug amiloride is inhibition of the enzyme urokinase-type plasminogen activator (uPA, K(i)=7 μM), a promising anticancer target. Several studies have demonstrated significant antitumor/metastasis properties for amiloride in animal cancer models and it would appear that these arise, at least in part, through inhibition of uPA. Selective optimization of amiloride's structure for more potent inhibition of uPA and loss of diuretic effects would thus appear as an attractive strategy towards novel anticancer agents. The following report is a preliminary structure-activity exploration of amiloride analogs as inhibitors of uPA. A key finding was that the well-studied 5-substituted analogs ethylisopropyl amiloride (EIPA) and hexamethylene amiloride (HMA) are approximately twofold more potent than amiloride as uPA inhibitors.  相似文献   

13.
The antibacterial and antifungal activity of a series of products, in which the 1,5-dimethyl-4-(cyano-NNO-azoxy)pyrazol-3-yl and 1,3-dimethyl-4-(cyano-NNO-azoxy)pyrazol-5-yl moieties were linked to pyridine, pyrazole, isoxazole, thiophene and the furan ring, were examined. No molecule displayed activity against the Gram-negative bacteria tested. Conversely, some compounds displayed activity against two Staphylococcus aureus strains, including the methicillin resistant strain. All compounds displayed interesting antifungal activity, the most active compound of the series being the thiophene derivative 7a. This compound’s activity against Candidakrusei and Candidaglabrata (MIC = 0.25 and 0.5 μg/mL, respectively), two fungal species resistant to azoles, is noteworthy. The presence of the cyano function appeared essential for activity.  相似文献   

14.
Described are the syntheses of three sansalvamide A derivatives that contain biotinylated tags at individual positions around the macrocycle. The tagged derivatives indicated in protein pull-down assays that they bind to Hsp90 at the same binding site (N-Middle domain) as the San A-amide peptide. Further, these compounds inhibit binding between Hsp90 and multiple C-terminal client proteins. This interaction is unique to the San A analogs indicating they can be tuned for selectivity against Hsp90 client/co-chaperone proteins.  相似文献   

15.
In this Letter we describe our ongoing target repurposing efforts focused on discovery of inhibitors of the essential trypanosomal phosphodiesterase TbrPDEB1. This enzyme has been implicated in virulence of Trypanosoma brucei, the causative agent of human African trypanosomiasis (HAT). We outline the synthesis and biological evaluation of analogs of tadalafil, a human PDE5 inhibitor currently utilized for treatment of erectile dysfunction, and report that these analogs are weak inhibitors of TbrPDEB1.  相似文献   

16.
Central heterocyclic ring size reduction from piperidinyl to pyrrolidinyl in the vesicular monoamine transporter-2 (VMAT2) inhibitor GZ-793A and its analogs resulted in novel N-propane-1,2(R)-diol analogs 11a–i. These compounds were evaluated for their affinity for the dihydrotetrabenazine (DTBZ) binding site on VMAT2 and for their ability to inhibit vesicular dopamine (DA) uptake. The 4-difluoromethoxyphenethyl analog 11f was the most potent inhibitor of [3H]-DTBZ binding (Ki = 560 nM), with 15-fold greater affinity for this site than GZ-793A (Ki = 8.29 μM). Analog 11f also showed similar potency of inhibition of [3H]-DA uptake into vesicles (Ki = 45 nM) compared to that for GZ-793A (Ki = 29 nM). Thus, 11f represents a new water-soluble inhibitor of VMAT function.  相似文献   

17.
A library of quinoxaline derivatives were prepared to target non-structural protein 1 of influenza A (NS1A) as a means to develop anti-influenza drug leads. An in vitro fluorescence polarization assay demonstrated that these compounds disrupted the dsRNA-NS1A interaction to varying extents. Changes of substituent at positions 2, 3 and 6 on the quinoxaline ring led to variance in responses. The most active compounds (35 and 44) had IC50 values in the range of low micromolar concentration without exhibiting significant dsRNA intercalation. Compound 44 was able to inhibit influenza A/Udorn/72 virus growth.  相似文献   

18.
6-Hydroxy-1H-carbazole-1,4(9H)-diones were synthesized and tested for in vitro antifungal activity against two pathogenic strains of fungi. Among them tested, many compounds showed good antifungal activity. The results suggest that 6-hydroxy-1H-carbazole-1,4(9H)-diones would be potent antifungal agents.  相似文献   

19.
New 1-[2-azido-2-(2,4-dichlorophenyl)ethyl]-1H/-imidazole were synthesized by nucleophilic substitution of various tertiary alcohols with azide anion in presence of boron trifluoride-diethyl etherate. Their antifungal activity was evaluated against Candida albicans, Candida glabrata, Aspergillus fumigatus and an azole-resistant petite mutant of C. glabrata. Preliminary SAR results are discussed.  相似文献   

20.
The overexpression of CYP1 family of enzymes is reported to be associated with development of human carcinomas. It has been well reported that CYP1A1 specific inhibitors prevents carcinogenesis. Herein, thirteen pyridine-4-yl series of chalcones were synthesized and screened for inhibition of CYP1 isoforms 1A1, 1B1 and 1A2 in Sacchrosomes? and live human HEK293 cells. The structure-activity relationship analysis indicated that chalcones bearing tri-alkoxy groups (8a and 8k) on non-heterocyclic ring displayed selective inhibition of CYP1A1 enzyme, with IC50 values of 58 and 65?nM, respectively. The 3,4,5-trimethoxy substituted derivative 8a have shown >10-fold selectivity towards CYP1A1 with respect to other enzymes of the CYP1 sub-family and >100-fold selectivity with respect to CYP2 and CYP3 family of enzymes. The potent and selective CYP1A1 inhibitor 8a displayed antagonism of B[a]P mediated activation of aromatic hydrocarbon receptor (AhR) in yeast cells, and also protected human cells from CYP1A1-mediated B[a]P toxicity in human cells. This potent and selective inhibitor of CYP1A1 enzyme have a potential for development as cancer chemopreventive agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号