首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat, SSR)-based genetic map was constructed using the interspecific cross of G. hirsutum × G. tomentosum (HT). We detected 1800 loci from 1347 pairs of polymorphic primers. Of these, 1204 loci were grouped into 35 linkage groups at LOD?≥?4. The map covers 3320.8 cM, with a mean density of 2.76 cM per locus. We detected 420 common loci (186 in the At subgenome and 234 in Dt) between the HT map and the map of TM-1 (G. hirsutum) and Hai 7124 (G. barbadense; HB map). The linkage groups were assigned chromosome numbers based on location of common loci and the HB map as reference. A comparison of common markers revealed that no significant chromosomal rearrangement exist between G. tomentosum and G. barbadense. Interestingly, however, we detected numerous (33.7%) segregation loci deviating from 3:1 ratio (P?<?0.05) in HT, mostly clustering on eight chromosomes in the Dt subgenome, with some on three chromosomes in At. Two morphological traits, leaf hairiness and leaf nectarilessness were mapped on chromosomes 6 (A6) and 26 (D12), respectively. The SSR-based map constructed in this study will be useful for further genetic studies on cotton breeding, including mapping loci controlling quantitative traits associated with fiber quality, stress tolerance and developing chromosome segment specific introgression lines from G. tomentosum into G. hirsutum using marker-assisted selection.  相似文献   

3.
In this study, we characterized the miR482 family in cotton using existing small RNA datasets and the recently released draft genome sequence of Gossypium raimondii, a diploid cotton species whose progenitor is the putative contributor of the Dt (representing the D genome of tetraploid) genome of the cultivated tetraploid cotton species G. hirsutum and G. barbadense. Of the three ghr-miR482 members reported in G. hirsutum, ghr-miR482a has no homolog in G. raimondii, ghr-miR482b and ghr-miR482c each has a single homolog in G. raimondii. Gra-miR482d has five homologous loci (gra-miR482d, f-i) in G. raimondii and also exists in G. hirsutum (ghr-miR482d). A variant, miR482.2 that is a homolog of miR2118 in other species, is produced from several GHR-MIR482 loci in G. hirsutum. Approximately 12% of the G. raimondii NBS-LRR genes were predicted targets of various members of the gra-miR482 family. Based on the rationale that the regulatory relationship between miR482 and NBS-LRR genes will be conserved in G. raimondii and G. hirsutum, we investigated this relationship using G. hirsutum miR482 and G. raimondii NBS-LRR genes, which are not currently available in G. hirsutum. Ghr-miR482/miR482.2-mediated cleavage was confirmed for three of the four NBS-LRR genes analysed. As in tomato, miR482-mediated cleavage of NBS-LRR genes triggered production of phased secondary small RNAs in cotton. In seedlings of the susceptible cultivar Sicot71 (G. hirsutum) infected with the fungal pathogen Verticillium dahliae, the expression levels of ghr-miR482b/miR482b.2, ghr-miR482c and ghr-miR482d.2 were down-regulated, and several NBS-LRR targets of ghr-miR482c and ghr-miR482d were up-regulated. These results imply that, like tomato plants infected with viruses or bacteria, cotton plants are able to induce expression of NBS-LRR defence genes by suppression of the miRNA-mediated gene silencing pathway upon fungal pathogen attack.  相似文献   

4.

Key message

We report the first complete set of alien addition lines of G. hirsutum . The characterized lines can be used to introduce valuable traits from G. australe into cultivated cotton.

Abstract

Gossypium australe is a diploid wild cotton species (2n = 26, GG) native to Australia that possesses valuable characteristics unavailable in the cultivated cotton gene pool, such as delayed pigment gland morphogenesis in the seed and resistances to pests and diseases. However, it is very difficult to directly transfer favorable traits into cultivated cotton through conventional gene recombination due to the absence of pairing and crossover between chromosomes of G. australe and Gossypium hirsutum (2n = 52, AADD). To enhance the transfer of favorable genes from wild species into cultivated cotton, we developed a set of hirsutumaustrale monosomic alien chromosome addition lines (MAAL) using a combination of morphological survey, microsatellite marker-assisted selection, and molecular cytogenetic analysis. The amphidiploid (2n = 78, AADDGG) of G. australe and G. hirsutum was consecutively backcrossed with upland cotton to develop alien addition lines of individual G. australe chromosomes in G. hirsutum. From these backcross progeny, we generated the first complete set of chromosome addition lines in cotton; 11 of 13 lines are monosomic additions, and chromosomes 7Ga and 13Ga are multiple additions. MAALs of 1Ga and 11Ga were the first to be isolated. The chromosome addition lines can be employed as bridges for the transfer of desired genes from G. australe into G. hirsutum, as well as for gene assignment, isolation of chromosome-specific probes, flow sorting and microdissection of chromosome, development of chromosome-specific ‘‘paints’’ for fluorochrome-labeled DNA fragments, physical mapping, and selective isolation and mapping of cDNAs for a particular G. australe chromosome.  相似文献   

5.

Key message

A total of 62 SNPs associated with yield-related traits were identified by a GWAS. Based on significant SNPs, two candidate genes pleiotropically increase lint yield.

Abstract

Improved fibre yield is considered a constant goal of upland cotton (Gossypium hirsutum) breeding worldwide, but the understanding of the genetic basis controlling yield-related traits remains limited. To better decipher the molecular mechanism underlying these traits, we conducted a genome-wide association study to determine candidate loci associated with six yield-related traits in a population of 719 upland cotton germplasm accessions; to accomplish this, we used 10,511 single-nucleotide polymorphisms (SNPs) genotyped by an Illumina CottonSNP63K array. Six traits, including the boll number, boll weight, lint percentage, fruit branch number, seed index and lint index, were assessed in multiple environments; large variation in all phenotypes was detected across accessions. We identified 62 SNP loci that were significantly associated with different traits on chromosomes A07, D03, D05, D09, D10 and D12. A total of 689 candidate genes were screened, and 27 of them contained at least one significant SNP. Furthermore, two genes (Gh_D03G1064 and Gh_D12G2354) that pleiotropically increase lint yield were identified. These identified SNPs and candidate genes provide important insights into the genetic control underlying high yields in G. hirsutum, ultimately facilitating breeding programmes of high-yielding cotton.
  相似文献   

6.
Gossypium hirsutum and G. barbadense are two cultivated tetraploid cotton species with differences in fibre quality. The fibre of G. barbadense is longer, stronger and finer than that of G. hirsutum. To isolate genes expressed differently between the two species during fibre development, cDNA-SRAP (sequence-related amplified polymorphism) was applied. This technique was used to analyse genes at different stages of fibre development in G. hirsutum cv. Emian22 and G. barbadense acc. 3-79, the parents of our interspecific mapping population. A total of 4096 SRAP primer combinations were used to screen polymorphism between the DNA of the parents, and 275 highly polymorphic primers were picked out to analyse DNA and RNA from leaves and fibres at different developmental stages of the parents. A total of 168 DNA fragments were isolated from gels and sequenced: 54, 30, 38 and 41 from fibres of 5, 10, 15 and 20 days post-anthesis, respectively, and five from multi stages. To genetically map these sequences, 104 sequence-specific primers were developed and were used to screened polymorphism between the mapping parents. Finally, six markers were mapped on six chromosomes of our backbone interspecific genetic map. This work can give us a primary knowledge of differences in mechanism of fibre development between G. hirsutum and G. barbadense.  相似文献   

7.
《Genomics》2022,114(5):110470
Germin-like proteins (GLPs) play important roles in plant disease resistance but are rarely reported in cotton. We compared the expression of GLPs in Verticillium dahliae inoculate G. hirsutum (susceptible) and G. barbadense (resistant) and enriched 11 differentially expressed GLPs. 2741 GLP proteins identified from 53 species determined that GLP probably originated from algae and could be classified into 7 clades according to phylogenetic analysis, among which Clade I is likely the most ancient. Cotton GLP (two allopolyploids and two diploids) genes within a shared clade were highly conserved. Intriguingly, clade VII genes were mainly located in gene clusters that derived from the expansion of LTR transposons. Clade VII members expressed mainly in root which is the first battle against Verticillium dahlia and could be induced more intensely in G. barbadense than G. hirsutum. The GLP genes are resistant to Verticillium dahliae, which can be further investigated against Verticillium wilt.  相似文献   

8.
Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3′ terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion–deletion (InDel) sequence (AATTGTTTT) at the 59–67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and reliable genotyping tool to assist hybrid cotton breeding.  相似文献   

9.

Key message

This study demonstrates the first practical use of CSILs for the transfer of fiber quality QTLs into Upland cotton cultivars using SSR markers without detrimentally affecting desirable agronomic characteristics.

Abstract

Gossypium hirsutum is characterized by its high lint production and medium fiber quality compared to extra-long staple cotton G. barbadense. Transferring valuable traits or genes from G. barbadense into G. hirsutum is a promising but challenging approach through a traditional interspecific introgression strategy. We developed one set of chromosome segment introgression lines (CSILs), where TM-1, the genetic standard in G. hirsutum, was used as the recipient parent and the long staple cotton G. barbadense cv. Hai7124 was used as the donor parent by molecular marker-assisted selection (MAS). Among them, four CSILs, IL040-A4-1, IL080-D6-1, IL088-A7-3 and IL019-A2-6, found to be associated with superior fiber qualities including fiber length, strength and fineness QTL in Xinjiang were selected and backcrossed, and transferred these QTLs into three commercial Upland cotton cultivars such as Xinluzao (XLZ) 26, 41 and 42 grown in Xinjiang. By backcrossing and self-pollinating twice, five improved lines (3262-4, 3389-2, 3326-3, 3380-4 and 3426-5) were developed by MAS of background and introgressed segments. In diverse field trials, these QTLs consistently and significantly offered additive effects on the target phenotype. Furthermore, we also pyramided two segments from different CSILs (IL080-D6-1 and IL019-A2-6) into cultivar 0768 to accelerate breeding process purposefully with MAS. The improved lines pyramided by these two introgressed segments showed significant additive epistatic effects in four separate field trials. No significant alteration in yield components was observed in these modified lines. In summary, we first report that these CSILs have great potential to improve fiber qualities in Upland cotton MAS breeding programs.  相似文献   

10.
《Genomics》2021,113(4):1999-2009
The high-quality reference-grade genome for Gossupium tomentosum can greatly promote the progress in biological research and introgression breeding for the mainly cultivated species, G. hirsutum. Here, we report a high-quality genome assembly for G. tomentosum by integrating PacBio and Hi-C technologies. Comparative genomic analysis revealed a large number of genetic variations. Two re-sequencing-based ultra-dense genetic maps were constructed which comprised 4,047,199 and 6,009,681 SNPs, 4120 and 4599 bins and covering 4126.36 cM and 4966.72 cM in the EMF2 (F2 from G. hirsutum × G. tomentosum) and GHF2 (F2 from G. hirsutum × G. barbadense). The EMF2 exhibited lower recombination rate at the whole-genome level as compared with GHF2. We mapped 22 and 33 QTL associated with crossover frequency and predicted Gh_MRE11 and Gh_FIGL1 as the candidate genes governing crossover in the EMF2 and GHF2, respectively. We identified 13 significant QTL that regulate the floral transition, and revealed that Gh_AGL18 was associated with the floral transition. Therefore, our study provides a valuable genomic resource to support a better understanding of cotton interspecific cross and recombination landscape for genetic improvement and breeding in cotton.  相似文献   

11.
Lai D  Li H  Fan S  Song M  Pang C  Wei H  Liu J  Wu D  Gong W  Yu S 《PloS one》2011,6(12):e28676

Background

Upland cotton, Gossypium hirsutum L., is one of the world''s most important economic crops. In the absence of the entire genomic sequence, a large number of expressed sequence tag (EST) resources of upland cotton have been generated and used in several studies. However, information about the flower development of this species is rare.

Methodology/Principal Findings

To clarify the molecular mechanism of flower development in upland cotton, 22,915 high-quality ESTs were generated and assembled into 14,373 unique sequences consisting of 4,563 contigs and 9,810 singletons from a normalized and full-length cDNA library constructed from pooled RNA isolated from shoot apexes, squares, and flowers. Comparative analysis indicated that 5,352 unique sequences had no high-degree matches to the cotton public database. Functional annotation showed that several upland cotton homologs with flowering-related genes were identified in our library. The majority of these genes were specifically expressed in flowering-related tissues. Three GhSEP (G. hirsutum L. SEPALLATA) genes determining floral organ development were cloned, and quantitative real-time PCR (qRT-PCR) revealed that these genes were expressed preferentially in squares or flowers. Furthermore, 670 new putative microsatellites with flanking sequences sufficient for primer design were identified from the 645 unigenes. Twenty-five EST–simple sequence repeats were randomly selected for validation and transferability testing in 17 Gossypium species. Of these, 23 were identified as true-to-type simple sequence repeat loci and were highly transferable among Gossypium species.

Conclusions/Significance

A high-quality, normalized, full-length cDNA library with a total of 14,373 unique ESTs was generated to provide sequence information for gene discovery and marker development related to upland cotton flower development. These EST resources form a valuable foundation for gene expression profiling analysis, functional analysis of newly discovered genes, genetic linkage, and quantitative trait loci analysis.  相似文献   

12.
Cotton leaf curl virus disease (CLCuD) is an important constraint to cotton production. The resistance of G. arboreum to this devastating disease is well documented. In the present investigation, we explored the possibility of transferring genes for resistance to CLCuD from G. arboreum (2n = 26) cv 15-Mollisoni into G. hirsutum (2n = 52) cv CRSM-38 through conventional breeding. We investigated the cytology of the BC1 to BC3 progenies of direct and reciprocal crosses of G. arboreum and G. hirsutum and evaluated their resistance to CLCuD. The F1 progenies were completely resistant to this disease, while a decrease in resistance was observed in all backcross generations. As backcrossing progressed, the disease incidence increased in BC1 (1.7–2.0%), BC2 (1.8–4.0%), and BC3 (4.2–7.0%). However, the disease incidence was much lower than that of the check variety CIM-496, with a CLCuD incidence of 96%. Additionally, the disease incidence percentage was lower in the direct cross 2(G. arboreumG. hirsutum than in that of G. hirsutum×G. arboreum. Phenotypic resemblance of BC1 ∼BC3 progenies to G. arboreum confirmed the success of cross between the two species. Cytological studies of CLCuD-resistant plants revealed that the frequency of univalents and multivalents was high in BC1, with sterile or partially fertile plants, but low in BC2 (in both combinations), with shy bearing plants. In BC3, most of the plants exhibited normal bearing ability due to the high frequency of chromosome associations (bivalents). The assessment of CLCuD through grafting showed that the BC1 to BC3 progenies were highly resistant to this disease. Thus, this study successfully demonstrates the possibility of introgressing CLCuD resistance genes from G. arboreum to G. hirsutum.  相似文献   

13.
14.
15.
16.
17.
Engineering of plant protection requires well-characterized tissue-specific promoters for the targeted expression of insecticidal resistance genes. Herein, we describe the isolation of five different fragments of promoters of three distinct flower-specific cotton (Gossypium hirsutum) genes. Expression analyses of the three genes GhPME-like1, GhβGal-like1 and GhPL-like1 revealed that they are expressed highly in flowers buds ranging from 4 to 12 mm in size. Several putative regulatory cis-elements were identified in the promoter regions, including elements involved in the control of tissue-specific gene expression in pollen grains and fruits. In vivo analyses of these promoters were performed using the heterologous plant system Arabidopsis thaliana by fusing them with the gene uidA (GUS). GUS staining in Arabidopsis tissues revealed that their expression was restricted to anthers, with the majority of expression in pollen grains and in the upper portion of the carpels and siliques. A comparison between a CaMV35S::GUS constitutive promoter and the promoters isolated in this study revealed that the cotton promoters were more active and were specific to flowers and fruits, which are organs that are preferentially attacked by important pest insects such as the boll weevil (Anthonomus grandis). The activity of the promoters was also confirmed using transient expression assays in flower buds of G. hirsutum. The promoters of GhPME-like1, GhβGal-like1 and GhPL-like1 are specific to reproductive tissues and could represent important biotechnological tools for controlling insect pests, in particular the cotton boll weevil, which attacks floral and fruit tissues.  相似文献   

18.
The pentatricopeptide repeat (PPR) protein family is one of the largest and most complex families in plants. These proteins contain multiple 35-amino acid repeats that are proposed to form a super helix capable of binding RNA. PPR proteins have been implicated in many crucial functions broadly involving organelle biogenesis and plant development. In this study, we identified many genes encoding PPR protein in Upland cotton through an extensive survey of the database of Gossypium hirsutum. Furthermore, we isolated five full-length cDNA of PPR genes from G. hirsutum 0-613-2R which were named GhPPR1–GhPPR5. Domain analysis revealed that the deduced amino acid sequences of GhPPR1–5 contained from 5 to 10 PPR motifs and those PPR proteins were divided into two different PPR subfamilies. GhPPR1–2 belonged to the PLS subfamily and GhPPR3–5 belonged to the P subfamily. Phylogenetic analysis of the five GhPPR proteins and 18 other plant PPR proteins also revealed that the same subfamily clustered together. All five GhPPR genes were differentially but constitutively expressed in roots, stems, leaves, pollens, and fibers based on the gene expression analysis by real-time quantitative RT-PCR. This study is the first report and analysis of genes encoding PPR proteins in cotton.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号