首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
It is widely accepted that insular terrestrial biodiversity progresses with island age because colonization and diversification proceed over time. Here, we assessed whether this principle extends to oceanic island streams. We examined rangewide mtDNA sequence variation in four stream‐dwelling species across the Hawaiian archipelago to characterize the relationship between colonization and demographic expansion, and to determine whether either factor reflects island age. We found that colonization and demographic expansion are not related and that neither corresponds to island age. The snail Neritina granosa exhibited the oldest colonization time (~2.713 mya) and time since demographic expansion (~282 kya), likely reflecting a preference for lotic habitats most prevalent on young islands. Conversely, gobioid fishes (Awaous stamineus, Eleotris sandwicensis and Sicyopterus stimpsoni) colonized the archipelago only ~0.411–0.935 mya, suggesting ecological opportunities for colonization in this group were temporally constrained. These findings indicate that stream communities form across colonization windows, underscoring the importance of ecological opportunities in shaping island freshwater diversity.  相似文献   

2.
Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature‐driven decline in habitat suitability for many of the most significant and bio‐diverse tropical coral regions, particularly in the central Indo‐Pacific. This is accompanied by a temperature‐driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short‐term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate.  相似文献   

3.
Globally, reef manta rays (Mobula alfredi) are in decline and are particularly vulnerable to exploitation and disturbance at aggregation sites. Here, passive acoustic telemetry and a suite of advanced oceanographic technologies were used for the first time to investigate the fine‐scale (5‐min) influence of oceanographic drivers on the visitation patterns of 19 tagged M. alfredi to a feeding aggregation site at Egmont Atoll in the Chagos Archipelago. Boosted regression trees indicate that tag detection probability increased with the intrusion of cold‐water bores propagating up the atoll slope through the narrow lagoon inlet during flood tide, potentially transporting zooplankton from the thermocline. Tag detection probability also increased with warmer near‐surface temperature close to low tide, with near‐surface currents flowing offshore, and with high levels of backscatter (a proxy of zooplankton biomass). These combinations of processes support the proposition that zooplankton carried from the thermocline into the lagoon during the flood may be pumped back out through the narrow inlet during an ebb tide. These conditions provide temporally limited feeding opportunities for M. alfredi, which are tied on the tides. Results also provide some evidence of the presence of Langmuir Circulation, which transports and concentrates zooplankton, and may partly explain why M. alfredi occasionally remained at the feeding location for longer than that two hours. Identification of these correlations provides unique insight into the dynamic synthesis of fine‐scale oceanographic processes which are likely to influence the foraging ecology of M. alfredi at Egmont Atoll, and elsewhere throughout their range.  相似文献   

4.
The 1998 global coral bleaching event was the largest recorded historical disturbance of coral reefs and resulted in extensive habitat loss. Annual censuses of reef fish community structure over a 12-year period spanning the bleaching event revealed a marked phase shift from a prebleach to postbleach assemblage. Surprisingly, we found that the bleaching event had no detectable effect on the abundance, diversity or species richness of a local cryptobenthic reef fish community. Furthermore, there is no evidence of regeneration even after 5–35 generations of these short-lived species. These results have significant implications for our understanding of the response of coral reef ecosystems to global warming and highlight the importance of selecting appropriate criteria for evaluating reef resilience.  相似文献   

5.
Quantifying the morphology of organisms remains fundamental in ecology given the form‐function relationship. Morphology is quantifiable in traits, landmarks, and outlines, and the choice of approach may influence ecological conclusions to an unknown extent. Here, we apply these three approaches to 111 individual coral reef fish of 40 species common in Micronesia. We investigate the major dimensions of morphological variability among individuals, families, and predefined feeding functional groups. We find that although the approaches are complementary, they coincide in capturing elongation as the main dimension of variability. Furthermore, the choice of approach led to different interpretations regarding the degree of morphological differentiation among taxonomic and feeding functional groups. We also use each morphology dataset to compute community‐scale morphological diversity on Palauan reefs and investigate how the choice of dataset affects the detection of differences among sites and wave exposure levels. The exact ranking of sites from highest to lowest morphological diversity was sensitive to the approach used, but not the broad spatial pattern of morphological diversity. Conclusions regarding the effect of wave exposure on morphological diversity were robust to the approach used. Biodiversity hotspots (e.g., areas of exceptionally high diversity and/or endemism) are considered important conservation targets but their location may depend on the biodiversity metric used. In the same vein, our results caution against labelling particular sites as morphological diversity hotspots when metrics consider only a single aspect of morphology.  相似文献   

6.
Plant functional group dominance has been linked to climate, topography and anthropogenic factors. Here, we assess existing theory linking functional group dominance patterns to their drivers by quantifying the spatial distribution of plant functional groups at a 100‐km grid scale. We use a standardized plant species occurrence dataset of unprecedented size covering the entire New World. Functional group distributions were estimated from 3 648 533 standardized occurrence records for a total of 83 854 vascular plant species, extracted from the Botanical Information and Ecology Network (BIEN) database. Seven plant functional groups were considered, describing major differences in structure and function: epiphytes; climbers; ferns; herbs; shrubs; coniferous trees; and angiosperm trees. Two measures of dominance (relative number of occurrences and relative species richness) were analysed against a range of hypothesized predictors. The functional groups showed distinct geographical patterns of dominance across the New World. Temperature seasonality and annual precipitation were most frequently selected, supporting existing hypotheses for the geographical dominance of each functional group. Human influence and topography were secondarily important. Our results support the prediction that future climate change and anthropogenic pressures could shift geographical patterns in dominance of plant functional groups, with probable consequences for ecosystem functioning. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 141–160.  相似文献   

7.
Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant–pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats.  相似文献   

8.
The mutualistic symbioses between reef‐building corals and micro‐algae form the basis of coral reef ecosystems, yet recent environmental changes threaten their survival. Diversity in host‐symbiont pairings on the sub‐species level could be an unrecognized source of functional variation in response to stress. The Caribbean elkhorn coral, Acropora palmata, associates predominantly with one symbiont species (Symbiodiniumfitti’), facilitating investigations of individual‐level (genotype) interactions. Individual genotypes of both host and symbiont were resolved across the entire species’ range. Most colonies of a particular animal genotype were dominated by one symbiont genotype (or strain) that may persist in the host for decades or more. While Symbiodinium are primarily clonal, the occurrence of recombinant genotypes indicates sexual recombination is the source of this genetic variation, and some evidence suggests this happens within the host. When these data are examined at spatial scales spanning the entire distribution of A. palmata, gene flow among animal populations was an order of magnitude greater than among populations of the symbiont. This suggests that independent micro‐evolutionary processes created dissimilar population genetic structures between host and symbiont. The lower effective dispersal exhibited by the dinoflagellate raises questions regarding the extent to which populations of host and symbiont can co‐evolve during times of rapid and substantial climate change. However, these findings also support a growing body of evidence, suggesting that genotype‐by‐genotype interactions may provide significant physiological variation, influencing the adaptive potential of symbiotic reef corals to severe selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号