首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a general theoretical framework for analyzing differentially expressed genes and behavior patterns from two homogenous short time-course data. The framework generalizes the recently proposed Hilbert-Schmidt Independence Criterion (HSIC)-based framework adapting it to the time-series scenario by utilizing tensor analysis for data transformation. The proposed framework is effective in yielding criteria that can identify both the differentially expressed genes and time-course patterns of interest between two time-series experiments without requiring to explicitly cluster the data. The results, obtained by applying the proposed framework with a linear kernel formulation, on various data sets are found to be both biologically meaningful and consistent with published studies.  相似文献   

2.
Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED). Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.  相似文献   

3.
4.
5.
MOTIVATION: A common objective of microarray experiments is the detection of differential gene expression between samples obtained under different conditions. The task of identifying differentially expressed genes consists of two aspects: ranking and selection. Numerous statistics have been proposed to rank genes in order of evidence for differential expression. However, no one statistic is universally optimal and there is seldom any basis or guidance that can direct toward a particular statistic of choice. RESULTS: Our new approach, which addresses both ranking and selection of differentially expressed genes, integrates differing statistics via a distance synthesis scheme. Using a set of (Affymetrix) spike-in datasets, in which differentially expressed genes are known, we demonstrate that our method compares favorably with the best individual statistics, while achieving robustness properties lacked by the individual statistics. We further evaluate performance on one other microarray study.  相似文献   

6.
7.
目的:通过对已公开发表的基因芯片表达谱数据进行研究,探究椎间盘退变过程中纤维环与髓核组织的基因表达差异,并采用生物信息学方法对差异进行分析。方法:经GEO数据库选取两组椎间盘退变相关的基因芯片表达谱数据GSE23130及GSE67567,GSE23130所研究标本来源于正常及退变纤维环组织,GSE67567标本来源于正常及退变髓核组织。对上述数据系列进行质量分析,GSE23130及GSE67567各有10例样本数据被纳入实验。采用Gene Spring 13.0软件对GSE23130正常及退变纤维环间差异表达基因及GSE67567正常及退变髓核间差异表达基因分别进行筛选,利用KEGG PATHWAY和DAVID功能注释簇集分析分别对GSE23130及GSE67567上调及下调基因进行生物信息学分析。结果:GSE23130及GSE67567各筛选出差异表达基因3182个和3017个,其中135个基因在上述两个基因表达谱数据中均存在差异表达。针对两组数据进行的KEGG PATHWAY分析发现TGF-beta signaling pathway和regulation of apoptosis等数个相同的生物学通路及DAVID功能注释簇集;此外,还发现了数个与GSE23130及GSE67567单独相关的DAVID功能注释簇集。结论:椎间盘退变过程中纤维环及髓核组织内基因表达情况存在差异,两种组织内发生的生物过程不尽相同。某些生物学过程在两种组织内均出现异常改变,这些生物学过程中的异常变化可能是椎间盘退变的关键环节,值得进行深入研究。  相似文献   

8.

Background  

Many studies have provided algorithms or methods to assess a statistical significance in quantitative proteomics when multiple replicates for a protein sample and a LC/MS analysis are available. But, confidence is still lacking in using datasets for a biological interpretation without protein sample replicates. Although a fold-change is a conventional threshold that can be used when there are no sample replicates, it does not provide an assessment of statistical significance such as a false discovery rate (FDR) which is an important indicator of the reliability to identify differentially expressed proteins. In this work, we investigate whether differentially expressed proteins can be detected with a statistical significance from a pair of unlabeled protein samples without replicates and with only duplicate LC/MS injections per sample. A FDR is used to gauge the statistical significance of the differentially expressed proteins.  相似文献   

9.
Hu J  Xu J 《BMC genomics》2010,11(Z2):S3

Motivation

Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes.

Results

We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning) is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO) with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change.

Conclusions

Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune
  相似文献   

10.
MOTIVATION: One major area of interest in analyzing oligonucleotide gene array data is identifying differentially expressed genes. A challenge to biostatisticians is to develop an approach to summarizing probe-level information that adequately reflects the true expression level while accounting for probe variation, chip variation and interaction effects. Various statistical tools, such as MAS and RMA, have been developed to address this issue. In these approaches, the probe level expression data are summarized into gene level data, which are then used for downstream statistical analysis. Since probe variation is often larger than chip variation and there is also a potential interaction effect between probe affinity and treatment effect, strategies such as a gene level analysis, may not be optimal. In this study, we propose a procedure to analyze probe level data for selecting differentially expressed genes under two treatment conditions (groups) with a small number of replicates. The probe level discrepancy between two groups can be measured by a difference of the percentiles of probe perfect-match (PM) ranks or of probe PM weighted ranks. The difference is then compared with a pre-specified threshold to determine differentially expressed genes. The probe level approach takes into account non-homogenous treatment effects and reduces possible cross-hybridization effects across a set of probes. RESULTS: The proposed approach is compared with MAS and RMA using two benchmark gene array datasets. Positive predictivity and sensitivity are used for evaluation. Results show the proposed approach has higher positive predictivity and higher sensitivity. AVAILABILITY: Available on request from the authors. CONTACT: dtchen@uab.edu.  相似文献   

11.

Background  

Time-course microarray experiments are being increasingly used to characterize dynamic biological processes. In these experiments, the goal is to identify genes differentially expressed in time-course data, measured between different biological conditions. These differentially expressed genes can reveal the changes in biological process due to the change in condition which is essential to understand differences in dynamics.  相似文献   

12.
With the rapid accumulation of biological omics datasets, decoding the underlying relationships of cross-dataset genes becomes an important issue. Previous studies have attempted to identify differentially expressed genes across datasets. However, it is hard for them to detect interrelated ones. Moreover, existing correlation-based algorithms can only measure the relationship between genes within a single dataset or two multi-modal datasets from the same samples. It is still unclear how to quantify the strength of association of the same gene across two biological datasets with different samples. To this end, we propose Approximate Distance Correlation (ADC) to select interrelated genes with statistical significance across two different biological datasets. ADC first obtains the k most correlated genes for each target gene as its approximate observations, and then calculates the distance correlation (DC) for the target gene across two datasets. ADC repeats this process for all genes and then performs the Benjamini-Hochberg adjustment to control the false discovery rate. We demonstrate the effectiveness of ADC with simulation data and four real applications to select highly interrelated genes across two datasets. These four applications including 21 cancer RNA-seq datasets of different tissues; six single-cell RNA-seq (scRNA-seq) datasets of mouse hematopoietic cells across six different cell types along the hematopoietic cell lineage; five scRNA-seq datasets of pancreatic islet cells across five different technologies; coupled single-cell ATAC-seq (scATAC-seq) and scRNA-seq data of peripheral blood mononuclear cells (PBMC). Extensive results demonstrate that ADC is a powerful tool to uncover interrelated genes with strong biological implications and is scalable to large-scale datasets. Moreover, the number of such genes can serve as a metric to measure the similarity between two datasets, which could characterize the relative difference of diverse cell types and technologies.  相似文献   

13.
14.
15.
16.
MOTIVATION: Finding differentially expressed genes is a fundamental objective of a microarray experiment. Numerous methods have been proposed to perform this task. Existing methods are based on point estimates of gene expression level obtained from each microarray experiment. This approach discards potentially useful information about measurement error that can be obtained from an appropriate probe-level analysis. Probabilistic probe-level models can be used to measure gene expression and also provide a level of uncertainty in this measurement. This probe-level measurement error provides useful information which can help in the identification of differentially expressed genes. RESULTS: We propose a Bayesian method to include probe-level measurement error into the detection of differentially expressed genes from replicated experiments. A variational approximation is used for efficient parameter estimation. We compare this approximation with MAP and MCMC parameter estimation in terms of computational efficiency and accuracy. The method is used to calculate the probability of positive log-ratio (PPLR) of expression levels between conditions. Using the measurements from a recently developed Affymetrix probe-level model, multi-mgMOS, we test PPLR on a spike-in dataset and a mouse time-course dataset. Results show that the inclusion of probe-level measurement error improves accuracy in detecting differential gene expression. AVAILABILITY: The MAP approximation and variational inference described in this paper have been implemented in an R package pplr. The MCMC method is implemented in Matlab. Both software are available from http://umber.sbs.man.ac.uk/resources/puma.  相似文献   

17.
Wang D  Cheng L  Zhang Y  Wu R  Wang M  Gu Y  Zhao W  Li P  Li B  Zhang Y  Wang H  Huang Y  Wang C  Guo Z 《Molecular bioSystems》2012,8(3):818-827
Based on the assumption that only a few genes are differentially expressed in a disease and have balanced upward and downward expression level changes, researchers usually normalise microarray data by forcing all of the arrays to have the same probe intensity distributions to remove technical variations in the data. However, accumulated evidence suggests that gene expressions could be widely altered in cancer, so we need to evaluate the sensitivities of biological discoveries to violation of the normalisation assumption. Here, we show that the medians of the original probe intensities increase in most of the ten cancer types analyzed in this paper, indicating that genes may be widely up-regulated in many cancer types. Thus, at least for cancer study, normalising all arrays to have the same distribution of probe intensities regardless of the state (diseased vs. normal) tends to falsely produce many down-regulated differentially expressed (DE) genes while missing many truly up-regulated DE genes. We also show that the DE genes solely detected in the non-normalised data for cancers are highly reproducible across different datasets for the same cancers, indicating that effective biological signals naturally exist in the non-normalised data. Because the powers of current statistical analyses using the non-normalised data tend to be low, we suggest selecting DE genes in both normalised and non-normalised data and then filter out the false DE genes extracted from the normalised data that show opposite deregulation directions in the non-normalised data.  相似文献   

18.
19.
DNA array technology now allows an enormous amount of expression data to be obtained. For large-scale gene profiling enterprises, this is of course welcome. However, the scientist interested in follow-up studies of a handful of differentially expressed genes may find it hard to sift through the vast datasets to pinpoint genes with the most desirable and reliable behaviors. Here, we present the methodology we have employed to discover genes differentially expressed in the adult mouse brain. We first used Affymetrix microarrays to compare gene expression from five different brain regions: the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray. Second, we identified genes differentially expressed within three distinct amygdala subnuclei. In this case, the tissue was microdissected by laser-capture to minimize contamination from adjacent subnuclei, and extracted RNA was subjected to three rounds of linear amplification prior to hybridization to the microarrays. To select candidate genes, we developed a custom algorithm to identify those genes with the most robust changes in expression across different replicate samples. Confirmation of expression patterns with in situ hybridization uncovered further criteria to consider in the selection process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号