首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300 pmol H2O2·min−1·mg protein−1 when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23 pmol H2O2·min−1·mg protein−1), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.  相似文献   

2.
Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD+ or NADH at about the same operating redox potential as the NADH/NAD+ pool and comprise the NADH/NAD+ isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)+ ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I.  相似文献   

3.
H2O2 production by skeletal muscle mitochondria oxidizing palmitoylcarnitine was examined under two conditions: the absence of respiratory chain inhibitors and the presence of myxothiazol to inhibit complex III. Without inhibitors, respiration and H2O2 production were low unless carnitine or malate was added to limit acetyl-CoA accumulation. With palmitoylcarnitine alone, H2O2 production was dominated by complex II (44% from site IIF in the forward reaction); the remainder was mostly from complex I (34%, superoxide from site IF). With added carnitine, H2O2 production was about equally shared between complexes I, II, and III. With added malate, it was 75% from complex III (superoxide from site IIIQo) and 25% from site IF. Thus complex II (site IIF in the forward reaction) is a major source of H2O2 production during oxidation of palmitoylcarnitine ± carnitine. Under the second condition (myxothiazol present to keep ubiquinone reduced), the rates of H2O2 production were highest in the presence of palmitoylcarnitine ± carnitine and were dominated by complex II (site IIF in the reverse reaction). About half the rest was from site IF, but a significant portion, ∼40 pmol H2O2·min−1·mg protein−1, was not from complex I, II, or III and was attributed to the proteins of β-oxidation (electron-transferring flavoprotein (ETF) and ETF-ubiquinone oxidoreductase). The maximum rate from the ETF system was ∼200 pmol H2O2·min−1·mg protein−1 under conditions of compromised antioxidant defense and reduced ubiquinone pool. Thus complex II and the ETF system both contribute to H2O2 productionduring fatty acid oxidation under appropriate conditions.  相似文献   

4.
The oxidation of sn-glycerol 3-phosphate by mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a major pathway for transfer of cytosolic reducing equivalents to the mitochondrial electron transport chain. It is known to generate H2O2 at a range of rates and from multiple sites within the chain. The rates and sites depend upon tissue source, concentrations of glycerol 3-phosphate and calcium, and the presence of different electron transport chain inhibitors. We report a detailed examination of H2O2 production during glycerol 3-phosphate oxidation by skeletal muscle, brown fat, brain, and heart mitochondria with an emphasis on conditions under which mGPDH itself is the source of superoxide and H2O2. Importantly, we demonstrate that a substantial portion of H2O2 production commonly attributed to mGPDH originates instead from electron flow through the ubiquinone pool into complex II. When complex II is inhibited and mGPDH is the sole superoxide producer, the rate of superoxide production depends on the concentrations of glycerol 3-phosphate and calcium and correlates positively with the predicted reduction state of the ubiquinone pool. mGPDH-specific superoxide production plateaus at a rate comparable with the other major sites of superoxide production in mitochondria, the superoxide-producing center shows no sign of being overreducible, and the maximum superoxide production rate correlates with mGPDH activity in four different tissues. mGPDH produces superoxide approximately equally toward each side of the mitochondrial inner membrane, suggesting that the Q-binding pocket of mGPDH is the major site of superoxide generation. These results clarify the maximum rate and mechanism of superoxide production by mGPDH.  相似文献   

5.
The two peroxidase isoenzyme groups (GI and GIII) localized in the cell walls of tobacco (Nicotiana tabacum L.) tissues were compared with respect to their capacity for NADH-dependent H2O2 formation. Peroxidases of the GIII group are slightly more active than those of the GI group when both are assayed under optimal conditions. This difference is probably not of major regulatory importance. NADH-dependent formation of H2O2 required the presence of Mn2+ and a phenol as cofactors. The addition of H2O2 to the reaction mixture accelerated subsequent NADH-dependent H2O2 formation. In the presence of both cofactors or Mn2+ alone, catalase oxidized NADH. However, if the cofactors were absent or if only dichlorophenol was present, catalase inhibited NADH oxidation. No H2O2 accumulation occurred in the presence of catalase. Superoxide dismutase inhibited NADH oxidation quite significantly indicating the involvement of the superoxide radical in the peroxidase reaction. These results are interpreted to mean that the reactions whereby tobacco cell wall peroxidases catalyze NADH-dependent H2O2 formation are similar to those proposed for horseradish peroxidase (Halliwell 1978 Planta 140: 81-88).  相似文献   

6.
Hydrogen peroxide (H2O2) is a key signaling molecule that also induces apoptosis. Thus, cells must rapidly sense and tightly control H2O2 levels. Well-characterized cellular responses to exogenous H2O2 involve oxidation of specific cytosolic protein-based thiols but sensing of H2O2 generated by mitochondrial respiration is less well described. Here we provide substantial biochemical evidence that the heme enzyme Ccp1 (cytochrome c peroxidase), which is targeted to the intermembrane space, functions primarily as a mitochondrial H2O2 sensing and signaling protein in Saccharomyces cerevisiae. Key evidence for a sensing role for Ccp1 is the significantly higher H2O2 accumulation in ccp1-null cells(ccp1Δ) vs ccp1W191F cells producing the catalytically inactive Ccp1W191F variant. In fact, intracellular H2O2 levels (ccp1Δ>wildtype >ccp1W191F) correlate inversely with the activity of the mitochondrial (and peroxisomal) heme catalase, Cta1 (ccp1Δ<wildtype <ccp1W191F). Mitochondrial Sod2 activity also varies in the three strains (ccp1Δ>wildtype >ccp1W191F) and ccp1Δ cells exhibit low superoxide levels. Notably, Ccp1W191F is a more persistent H2O2 signaling protein than wild-type Ccp1, and this enhanced mitochondrial H2O2 signaling decreases the mitochondrial fitness of ccp1W191F cells. However, these cells are fully protected from a bolus (0.4 mM) of exogenous H2O2 added after 12 h of growth, whereas the viability of ccp1Δ cells drops below 20%, which additionally associates Ccp1 with Yap1-dependent H2O2 signaling. Combined, our results strongly implicate Ccp1, independent of its peroxidase activity, in mitochondrial H2O2 sensing and signaling to maintain reactive oxygen species homeostasis.  相似文献   

7.
The underlying causes of aging remain elusive, but may include decreased intestinal homeostasis followed by disruption of the intestinal barrier, which can be mimicked by nutrient‐rich diets. S3QELs are small‐molecule suppressors of site IIIQo electron leak; they suppress superoxide generation at complex III of the mitochondrial electron transport chain without inhibiting oxidative phosphorylation. Here we show that feeding different S3QELs to Drosophila on a high‐nutrient diet protects against greater intestinal permeability, greater enterocyte apoptotic cell number, and shorter median lifespan. Hif‐1α knockdown in enterocytes also protects, and blunts any further protection by S3QELs. Feeding S3QELs to mice on a high‐fat diet also protects against the diet‐induced increase in intestinal permeability. Our results demonstrate by inference of S3QEL use that superoxide produced by complex III in enterocytes contributes to diet‐induced intestinal barrier disruption in both flies and mice.  相似文献   

8.

Background

The macrolide antibiotics oligomycin, venturicidin and bafilomycin, sharing the polyketide ring and differing in the deoxysugar moiety, are known to block the transmembrane ion channel of ion-pumping ATPases; oligomycins are selective inhibitors of mitochondrial ATP synthases.

Methods

The inhibition mechanism of macrolides was explored on swine heart mitochondrial F1FO-ATPase by kinetic analyses. The amphiphilic membrane toxicant tributyltin (TBT) and the thiol reducing agent dithioerythritol (DTE) were used to elucidate the nature of the macrolide–enzyme interaction.

Results

When individually tested, the macrolide antibiotics acted as uncompetitive inhibitors of the ATPase activity. Binary mixtures of macrolide inhibitors I1 and I2 pointed out a non-exclusive mechanism, indicating that each macrolide binds to its binding site on the enzyme. When co-present, the two macrolides acted synergistically in the formed quaternary complex (ESI1I2), thus mutually strengthening the enzyme inhibition. The enzyme inhibition by macrolides displaying a shared mechanism was dose-dependently reduced by TBT ≥ 1 μM. The TBT-driven enzyme desensitization was reversed by DTE.

Conclusions

The macrolides tested share uncompetitive inhibition mechanism by binding to a specific site in a common macrolide-binding region of FO. The oxidation of highly conserved thiols in the ATP synthase c-ring of FO weakens the interaction between the enzyme and the macrolides. The native macrolide-inhibited enzyme conformation can be restored by reducing crucial thiols oxidized by TBT.

General significance

The findings, by elucidating the macrolide inhibitory mechanism on FO, indirectly cast light on the F1FO torque generation involving crucial amino acid residues and may address drug design and antimicrobial therapy.  相似文献   

9.
There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.  相似文献   

10.
The molecular mechanism by which the membrane-embedded FO sector of the mitochondrial ATP synthase translocates protons, thus dissipating the transmembrane protonmotive force and leading to ATP synthesis, involves the neutralization of the carboxylate residues of the c-ring. Carboxylates are thought to constitute the binding sites for ion translocation. In order to cast light on this mechanism, we exploited N,N’-dicyclohexylcarbodiimide, which covalently binds to FO c-ring carboxylates, and ionophores which selectively modulate the transmembrane electric (Δφ) and chemical (ΔpH) gradients such as valinomycin, nigericin and dinitrophenol. ATP hydrolysis was evaluated in mitochondrial preparations and/or inside-out submitochondrial particles from mussel and mammalian tissues under different experimental conditions. The experiments pointed out striking similarities between mussel and mammalian mitochondrial ATP synthase. Our results support the hypothesis that the ATP synthase of Mytilus galloprovincialis induces intersubunit torque generation and translocates H+ by coordinating the hydronium ion (H3O+) in the ion binding site of FO. Our results are consistent with the hypothesis that in mussel mitochondria the main component of the electrochemical gradient driving proton flux and ATP synthesis is Δφ. Therefore, mussel FO probably contains a small c-ring, which implies a low bioenergetic cost of making ATP as in mammals. These features which make mussel mitochondria as efficient in ATP production as mammalian ones may be especially advantageous in facultative aerobic species which intermittently exploit mitochondrial respiration to generate ATP.  相似文献   

11.
Superoxide is the proximal reactive oxygen species (ROS) produced by the mitochondrial respiratory chain and plays a major role in pathological oxidative stress and redox signaling. While there are tools to detect or decrease mitochondrial superoxide, none can rapidly and specifically increase superoxide production within the mitochondrial matrix. This lack impedes progress, making it challenging to assess accurately the roles of mitochondrial superoxide in cells and in vivo. To address this unmet need, we synthesized and characterized a mitochondria-targeted redox cycler, MitoParaquat (MitoPQ) that comprises a triphenylphosphonium lipophilic cation conjugated to the redox cycler paraquat. MitoPQ accumulates selectively in the mitochondrial matrix driven by the membrane potential. Within the matrix, MitoPQ produces superoxide by redox cycling at the flavin site of complex I, selectively increasing superoxide production within mitochondria. MitoPQ increased mitochondrial superoxide in isolated mitochondria and cells in culture ~a thousand-fold more effectively than untargeted paraquat. MitoPQ was also more toxic than paraquat in the isolated perfused heart and in Drosophila in vivo. MitoPQ enables the selective generation of superoxide within mitochondria and is a useful tool to investigate the many roles of mitochondrial superoxide in pathology and redox signaling in cells and in vivo.  相似文献   

12.
The effects of H2O2 are widely studied in cell cultures and other in vitro systems. However, such investigations are performed with the assumption that H2O2 concentration is constant, which may not properly reflect in vivo settings, particularly in redox-turbulent microenvironments such as mitochondria. Here we introduced and tested a novel concept of fluctuating oxidative stress. We treated C6 astroglial cells and primary astrocytes with H2O2, using three regimes of exposure – continuous, as well as fluctuating at low or high rate, and evaluated mitochondrial membrane potential and other parameters of mitochondrial activity – respiration, reducing capacity, and superoxide production, as well as intracellular ATP, intracellular calcium, and NF-κB activation. When compared to continuous exposure, fluctuating H2O2 induced a pronounced hyperpolarization in mitochondria, whereas the activity of electron transport chain appears not to be significantly affected. H2O2 provoked a decrease of ATP level and an increase of intracellular calcium concentration, independently of the regime of treatment. However, fluctuating H2O2 induced a specific pattern of large-amplitude fluctuations of calcium concentration. An impact on NF-κB activation was observed for high rate fluctuations, whereas continuous and low rate fluctuating oxidative stress did not provoke significant effects. Presented results outline the (patho)physiological relevance of redox fluctuations.  相似文献   

13.
The deleterious effects of H2O2 on the electron transport chain of yeast mitochondria and on mitochondrial lipid peroxidation were evaluated. Exposure to H2O2 resulted in inhibition of the oxygen consumption in the uncoupled and phosphorylating states to 69% and 65%, respectively. The effect of H2O2 on the respiratory rate was associated with an inhibition of succinate-ubiquinone and succinate-DCIP oxidoreductase activities. Inhibitory effect of H2O2 on respiratory complexes was almost completely recovered by β-mercaptoethanol treatment. H2O2 treatment resulted in full resistance to QO site inhibitor myxothiazol and thus it is suggested that the quinol oxidase site (QO) of complex III is the target for H2O2. H2O2 did not modify basal levels of lipid peroxidation in yeast mitochondria. However, H2O2 addition to rat brain and liver mitochondria induced an increase in lipid peroxidation. These results are discussed in terms of the known physiological differences between mammalian and yeast mitochondria.  相似文献   

14.
Three peroxidase isoenzyme-groups found in cell walls of tobacco were tested for their capacity to form H2O2. Isoenzyme-group GI, located only in cell walls (GII and GIII are also found in protoplasts) showed the highest Kapp-value for H2O2-formation. The lowest Kapp-value, i.e., maximal H2O2-formation was received for group GIII which is ionically bound to the cell wall. As shown before, GI yields maximal polymerization rates for coniferyl- and p-coumarylalcohol. These facts indicate that each of the peroxidase isoenzyme groups of the cell wall is involved with different catalytic functions within the same pathways of H2O2-formation and succeeding lignification. H2O2-formation catalyzed by all 3 groups was increased by very low concentrations of Mn2+-ions. The required amount of Mn2+ leading to maximal stimulation was in each case dependent on the basic rate of H2O2-formation. Maximal stimulation of H2O2-formation by phenolic compounds was achieved by coniferylalcohol at a concentration of 10-4M for all groups. Stimulation by p-coumaryl-and by sinapylalcohol was not as significant.  相似文献   

15.
《BBA》2020,1861(11):148264
The physical and functional organisation of the OXPHOS system in mitochondria in vivo remains elusive. At present, different models of OXPHOS arrangement, representing either highly ordered respiratory strings or, vice versa, a set of randomly dispersed supercomplexes and respiratory complexes, have been suggested. In the present study, we examined a supramolecular arrangement of the OXPHOS system in pea shoot mitochondria using digitonin solubilisation of its constituents, which were further analysed by classical BN-related techniques and a multidimensional gel electrophoresis system when required. As a result, in addition to supercomplexes I1III2, I1III2IVn and III2IV12, dimer V2, and individual complexes I-V previously detected in plant mitochondria, new OXPHOS structures were also revealed. Of them, (1) a megacomplex (IIxIIIyIVz)n including complex II, (2) respirasomes I2III4IVn with two copies of complex I and dimeric complex III2, (3) a minor new supercomplex IV1Va2 comigrating with I1III2, and (4) a second minor form of ATP synthase, Va, were found. The activity of singular complexes I, IV, and V was higher than the activity of the associated forms. The detection of new supercomplex IV1Va2, along with assemblies I1III2 and I12III24IVn, prompted us to suggest the occurrence of in vivo oxphosomes comprising complexes I, III2, IV, and V. The putative oxphosome's stoichiometry, historical background, assumed functional significance, and subcompartmental location are discussed herein.  相似文献   

16.
Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii.  相似文献   

17.
To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for “signaling” and “damaging” ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress.  相似文献   

18.
H2O2 production by coupled mitochondrial fractions from the protozoan, Crithidia fasciculata, has been measured spectrophotometrically by the formation of the stable enzyme-substrate complex with yeast cytochrome c peroxidase. H2O2 formation was observed with succinate, l-α-glycerophosphate, l-proline, α-ketoglutarate, and with endogenous substrate. The maximum rate of H2O2 generation obtained with each substrate in the presence of antimycin A was about 10% of the state 4 rate of O2 respiration, and only 1–2% of the carbonylcyanide m-fluorophenylhydrazone-uncoupled respiratory rate. Therefore, excess O2 uptake due to the formation of H2O2 cannot satisfactorily account for the low ADP:O ratios previously reported.Cytochrome c peroxidase activity was measured in mitochondrial preparations by recording the decrease in absorbance at 550 nm during the oxidation of horse heart ferrocytochrome c which was observed after addition of H2O2. The distribution of activity after sonic disruption of mitochondrial preparations was that expected for a soluble enzyme. The activity was proportional to the amount of enzyme protein added, and was abolished by heating at 100 °C for 3 min. Total cytochrome c peroxidase activity in mitochondrial fractions isolated from C. fasciculata was calculated to be 0.3% that of isolated yeast mitochondria, but it is suggested that the in vivo activity may be considerably higher than this estimate.  相似文献   

19.
The lactate/pyruvate oxidation (Qo2) ratio was 1.21 ± 0.04 for heart homogenates as compared to 0.92 ± 0.05 for white quadriceps muscle homogenates during state 3 respiration. The extra lactate Qo2 could be accounted for by the oxidation of additional NADH2 from lactate, assuming the oxidation of 12 H+/lactate and 10 H+/pyruvate. A high correlation of 0.92 was observed between extra lactate Qo2 and activity of heart-type LDH isozyme. This finding and the mitochondrial location of heart-type isozyme (1) suggests the extra lactate Qo2 in heart homogenates could represent the oxidation of NADH2 formed from lactate by the mitochondria.  相似文献   

20.
Responses of marine macroalgae to hydrogen-peroxide stress   总被引:1,自引:0,他引:1  
In this study, we determined the antioxidative potential of 15 marine macroalgae by measuring the photosynthetic efficiency under artificial oxidative stress after a 30-min exposure to a series of ascending H2O2 concentrations. Species exhibiting high maximum quantum yields (Fv/Fm values) were regarded as not susceptible towards H2O2 stress. In addition to the short-term stress experiments, the antioxidative defense systems (enzymatic and non-enzymatic) of selected algal species under longer exposure times to H2O2 were investigated.Species with striking photosynthetic activity under H2O2 stress were Chaetomorpha melagonium (Chlorophyta), showing 40% reduced Fv/Fm as compared to the control after 8 days of exposure to 20 mM H2O2. In Fucus distichus (Phaeophyta) Fv/Fm decreased to 50% of the control under the same exposure conditions. Polysiphonia arctica (Rhodophyta) exhibited highest Fv/Fm values with a reduction of only 25%, therefore possessing the highest antioxidative potential of the investigated species.In P. arctica the activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), as well as the pool size of the antioxidant ascorbic acid were investigated. When exposed to different H2O2 concentrations (0-2 mM) over 6 days, the intrinsic activities of SOD and GR were stimulated. In a kinetic study over 8 days, the activity of antioxidative enzymes APX and CAT as well as ascorbic acid content were recorded. APX activity was much higher in H2O2-treated thalli at the end of the experiment than in the control, also CAT activity increased significantly with increasing H2O2 stress. In parallel, ascorbic acid content was reduced under high H2O2 concentrations. Furthermore, by using GC-MS techniques in P. arctica bromophenolic compounds with antioxidative properties were identified.This study shows that the measurement of the in vivo fluorescence of photosystem II is a suitable tool to determine the effect of oxidative stress on macroalgae. From these studies it is obvious that different algal species have varying strategies against oxidative stress which correlate with zonation on the shore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号